Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

16-11-2017 | Original Article | Issue 2/2018

Engineering with Computers 2/2018

Evaluation of effect of rock mass properties on fragmentation using robust techniques

Journal:
Engineering with Computers > Issue 2/2018
Authors:
Amirhossein Mehrdanesh, Masoud Monjezi, Ahmad Reza Sayadi

Abstract

In the civil and mining projects, blasting operation is important from technical and economical point of view. There are several parameters which affect the result of operation such as desired fragmentation and undesired phenomena, e.g., ground vibration, fly rock, etc. From these parameters, rock mass characterizations can be considered as more influential as compared to the blasting pattern. In other words, it can be said that pattern specifications should primarily be designed according to the rock mass properties to reach the main objective of the operation, i.e., rock fragmentation. Complex nature of the problem needs to implement robust approaches such as artificial intelligence-based techniques. In this paper, an attempt has been made to develop some models by which the impact of each and every parameter influencing the result of blasting operation can be evaluated. For this research work, 432 datasets from 14 mines situated in the different parts of the world has been collected. In developing of the models, 19 parameters such as uniaxial compressive strength, tensile strength, brittleness, Point Load Index, Young’s modulus, Poisson’s ratio, rock quality designation, cohesion, friction angle, burden, spacing and stemming were incorporated. Regression analysis, decision tree and artificial neural network methods were employed for developing the models for predicting fragmentation. Determination coefficient (R2) for artificial neural network modeling, multivariate linear regression and decision tree was computed 0.98, 0.83 and 0.45, respectively, showing accuracy of network modeling over the other applied methods. In addition, it was revealed that the most influential parameters on fragmentation are Point Load Index, uniaxial compressive strength, Poisson’s ratio, cohesion and rock quality designation, respectively, and the least effective ones are stemming, spacing and hole diameter, respectively.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2018

Engineering with Computers 2/2018 Go to the issue