Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Evaluation of Growth and Lipid Profiles in Six Different Microalgal Strains for Biofuel Production

Authors : Kashif M. Shaikh, Asha A. Nesamma, Malik Z. Abdin, Pavan P. Jutur

Published in: Conference Proceedings of the Second International Conference on Recent Advances in Bioenergy Research

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microalgae have been considered as potential feedstock to produce higher biomass and lipid content that is more suitable for biofuel production than traditional oleaginous crop plants, thus seems to be on niche of accumulating energy reserves to produce next-generation renewables such as biofuels and high-value chemicals, an essential alternative for diminishing fossil fuels. Evaluation of growth and lipid profiles of few oleaginous microalgae under nutrient deprivation will be the method to identify best industrial strain for production of biofuel precursors at commercial level. In the present study, we have evaluated six microalgal (both marine and freshwater) strains to find out their metabolic responses on growth and lipid profiles under different nutrient limitation (nitrogen, phosphorous, and/or sulfur) conditions. Our results demonstrate that all these strains showed severe growth hampering by stress phenomenon under nutrient deprivation except for phosphorous limitation, wherein the growth was normal among marine strains. Algal oils are rich in the triacylglycerols (TAGs) that serve as material for conversion to biofuels. Therefore, changes triggered by nutrient deprivation in these microalgae primarily increased TAG content (~up to 20 mg L−1 D−1) among marine strains under nitrogen and phosphorous limitation, whereas among freshwater strains, nitrogen limitation played a major role in increasing the TAG content (~up to 15 mg L−1 D−1). In conclusion, the biomass and lipid productivity among marine strains seems to be higher when compared to freshwater strains. Among all these six potential strains, we evaluated and identified a suitable marine strain Parachlorella kessleri with better biomass and higher lipid productivity for further characterization, which may be a critical step toward making algae-derived biofuels economically competitive for industrial production.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cheng D, He Q (2014) Assessment of environmental stresses for enhanced microalgae biofuel production–an overview. Front Energy Res 2:1–8CrossRef Cheng D, He Q (2014) Assessment of environmental stresses for enhanced microalgae biofuel production–an overview. Front Energy Res 2:1–8CrossRef
2.
go back to reference Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54:621–639CrossRef Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54:621–639CrossRef
3.
4.
go back to reference Jutur PP, Asha AN (2015) Marine microalgae: exploring the systems through an omics approach for biofuel production. In: Kim S-K, Lee CG (eds) Marine bioenergy-trends and developments. Taylor and Francis Group, pp 149–162 Jutur PP, Asha AN (2015) Marine microalgae: exploring the systems through an omics approach for biofuel production. In: Kim S-K, Lee CG (eds) Marine bioenergy-trends and developments. Taylor and Francis Group, pp 149–162
5.
go back to reference Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232CrossRef Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232CrossRef
6.
go back to reference Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799CrossRef Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799CrossRef
7.
go back to reference Doan TTY, Sivaloganathan B, Obbard JP (2011) Screening of marine microalgae for biodiesel feedstock. Biomass Bioenergy 35:2534–2544CrossRef Doan TTY, Sivaloganathan B, Obbard JP (2011) Screening of marine microalgae for biodiesel feedstock. Biomass Bioenergy 35:2534–2544CrossRef
8.
go back to reference Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507CrossRef Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507CrossRef
9.
go back to reference Tsai C-H, Warakanont J, Takeuchi T, Sears BB, Moellering ER, Benning C (2014) The protein compromised hydrolysis of triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas. Proc Natl Acad Sci U S A 111:15833–15838CrossRef Tsai C-H, Warakanont J, Takeuchi T, Sears BB, Moellering ER, Benning C (2014) The protein compromised hydrolysis of triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas. Proc Natl Acad Sci U S A 111:15833–15838CrossRef
10.
go back to reference Scranton MA, Ostrand JT, Fields FJ, Mayfield SP (2015) Chlamydomonas as a model for biofuels and bio-products production. Plant J. 82:523–531CrossRef Scranton MA, Ostrand JT, Fields FJ, Mayfield SP (2015) Chlamydomonas as a model for biofuels and bio-products production. Plant J. 82:523–531CrossRef
11.
go back to reference Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRef Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRef
12.
go back to reference Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286CrossRef Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286CrossRef
13.
go back to reference Costa JAV, de Morais MG (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 102:2–9CrossRef Costa JAV, de Morais MG (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 102:2–9CrossRef
14.
go back to reference Day JG, Slocombe SP, Stanley MS (2011) Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour Technol 109:245–251CrossRef Day JG, Slocombe SP, Stanley MS (2011) Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour Technol 109:245–251CrossRef
15.
go back to reference Kliphuis AM, de Winter L, Vejrazka C, Martens DE, Janssen M, Wijffels RH (2010) Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. Biotechnol Prog 26:687–696CrossRef Kliphuis AM, de Winter L, Vejrazka C, Martens DE, Janssen M, Wijffels RH (2010) Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. Biotechnol Prog 26:687–696CrossRef
16.
go back to reference Ono E, Cuello JL (2007) Carbon dioxide mitigation using thermophilic cyanobacteria. Biosyst Eng 96:129–134CrossRef Ono E, Cuello JL (2007) Carbon dioxide mitigation using thermophilic cyanobacteria. Biosyst Eng 96:129–134CrossRef
17.
go back to reference Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 37:3428–3437CrossRef Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 37:3428–3437CrossRef
18.
go back to reference Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and waste-waters: a review. Appl Energy 88:3389–3401CrossRef Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and waste-waters: a review. Appl Energy 88:3389–3401CrossRef
19.
go back to reference Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424CrossRef Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424CrossRef
20.
go back to reference Raja R, Hemaiswarya S, Ashok Kumar N, Sridhar S, Rengasamy R (2008) A perspective on biotechnological potential of microalgae. Crit Rev Microbiol 34:34–77CrossRef Raja R, Hemaiswarya S, Ashok Kumar N, Sridhar S, Rengasamy R (2008) A perspective on biotechnological potential of microalgae. Crit Rev Microbiol 34:34–77CrossRef
21.
go back to reference Spolaore P, Joannis-Cassan C, Duran E, Isambet A (2006) Commercial applications of microalgae. J Bio sci Bioeng 101:87–96CrossRef Spolaore P, Joannis-Cassan C, Duran E, Isambet A (2006) Commercial applications of microalgae. J Bio sci Bioeng 101:87–96CrossRef
22.
go back to reference Fang S-C (2014) Metabolic engineering and molecular biotechnology of microalgae for fuel production. In: Pandey A, Lee DJ, Chisti Y, Soccol CR (eds) Biofuels from algae. Elsevier, Amsterdam, pp 47–65CrossRef Fang S-C (2014) Metabolic engineering and molecular biotechnology of microalgae for fuel production. In: Pandey A, Lee DJ, Chisti Y, Soccol CR (eds) Biofuels from algae. Elsevier, Amsterdam, pp 47–65CrossRef
23.
go back to reference Gong Y, Jiang M (2011) Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol Lett 33:1269–1284CrossRef Gong Y, Jiang M (2011) Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol Lett 33:1269–1284CrossRef
24.
go back to reference Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726CrossRef Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726CrossRef
25.
go back to reference Singh A, Pant D, Olsen SI, Nigam PS (2012) Key issues to consider in microalgae based biodiesel production. Energy Edu Sci Technol Part A Energy Sci Res 29:687–700 Singh A, Pant D, Olsen SI, Nigam PS (2012) Key issues to consider in microalgae based biodiesel production. Energy Edu Sci Technol Part A Energy Sci Res 29:687–700
26.
go back to reference Singh NK, Dhar DW (2011) Microalgae as second generation biofuel. A review. Agro Sustain Dev 31:605–629CrossRef Singh NK, Dhar DW (2011) Microalgae as second generation biofuel. A review. Agro Sustain Dev 31:605–629CrossRef
27.
go back to reference Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88:3402–3410CrossRef Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88:3402–3410CrossRef
28.
go back to reference Cao J, Yuan H, Li B, Yang J (2014) Significance evaluation of the effects of environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition. Bioresour Technol 152:177–184CrossRef Cao J, Yuan H, Li B, Yang J (2014) Significance evaluation of the effects of environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition. Bioresour Technol 152:177–184CrossRef
29.
go back to reference Demirbas A, Fatih DM (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manage 52:163–170CrossRef Demirbas A, Fatih DM (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manage 52:163–170CrossRef
30.
go back to reference Singh B, Guldhe A, Rawat I, Bux F (2014) Toward a sustainable approach for development of biodiesel from plant and microalgae. Renew Sustain Energy Rev 29:216–245CrossRef Singh B, Guldhe A, Rawat I, Bux F (2014) Toward a sustainable approach for development of biodiesel from plant and microalgae. Renew Sustain Energy Rev 29:216–245CrossRef
31.
go back to reference Talebi AF, Tohidfar M, Tabatabaei M, Bagheri A, Mohsenpor M, Mohtashami SK (2013) Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Mol Biol Rep 40:4421–4428CrossRef Talebi AF, Tohidfar M, Tabatabaei M, Bagheri A, Mohsenpor M, Mohtashami SK (2013) Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Mol Biol Rep 40:4421–4428CrossRef
32.
go back to reference Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532CrossRef Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532CrossRef
33.
go back to reference Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol 8:229–239CrossRef Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol 8:229–239CrossRef
34.
go back to reference Sueoka N (1960) Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 46:83–91CrossRef Sueoka N (1960) Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 46:83–91CrossRef
35.
go back to reference Harris EH (1989) The Chlamydomonas source book: a comprehensive guide to biology and laboratory use, 1st edn. Academic Press, San Diego Harris EH (1989) The Chlamydomonas source book: a comprehensive guide to biology and laboratory use, 1st edn. Academic Press, San Diego
36.
go back to reference Levasseur M, Thompson PA, Harrison PJ (1993) Physiological acclimation of marine phytoplankton to different nitrogen sources. J Phycol 29:587–595CrossRef Levasseur M, Thompson PA, Harrison PJ (1993) Physiological acclimation of marine phytoplankton to different nitrogen sources. J Phycol 29:587–595CrossRef
37.
go back to reference Duong VT, Thomas-Hall SR, Schenk PM (2015) Growth and lipid accumulation of microalgae from fluctuating brackish and sea water locations in South East Queensland—Australia. Front Plant Sci 6:359CrossRef Duong VT, Thomas-Hall SR, Schenk PM (2015) Growth and lipid accumulation of microalgae from fluctuating brackish and sea water locations in South East Queensland—Australia. Front Plant Sci 6:359CrossRef
38.
go back to reference Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917CrossRef Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917CrossRef
39.
go back to reference Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50–59CrossRef Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50–59CrossRef
40.
go back to reference Lim DK, Garg S, Timmins M, Zhang ES, Thomas-Hall SR, Schuhmann H, Li Y, Schenk PM (2012) Isolation and evaluation of oil-producing microalgae from subtropical coastal and brackish waters. PLoS ONE 7:40751CrossRef Lim DK, Garg S, Timmins M, Zhang ES, Thomas-Hall SR, Schuhmann H, Li Y, Schenk PM (2012) Isolation and evaluation of oil-producing microalgae from subtropical coastal and brackish waters. PLoS ONE 7:40751CrossRef
41.
go back to reference Brown MR (1991) The amino acid and sugar composition of sixteen species of microalgae used in mariculture. J Exp Mar Biol Ecol 145:79–99CrossRef Brown MR (1991) The amino acid and sugar composition of sixteen species of microalgae used in mariculture. J Exp Mar Biol Ecol 145:79–99CrossRef
42.
go back to reference Gordon JM, Polle JE (2007) Ultrahigh bioproductivity from algae. Appl Microbiol Biotechnol 76:969–975CrossRef Gordon JM, Polle JE (2007) Ultrahigh bioproductivity from algae. Appl Microbiol Biotechnol 76:969–975CrossRef
43.
go back to reference Schuhmann H, Lim DKY, Schenk PM (2012) Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels 3:71–86CrossRef Schuhmann H, Lim DKY, Schenk PM (2012) Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels 3:71–86CrossRef
44.
go back to reference Valenzuela J, Mazurie A, Carlson RP, Gerlach R, Cooksey KE, Peyton BM, Fields MW (2012) Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol Biofuels 5:1–17CrossRef Valenzuela J, Mazurie A, Carlson RP, Gerlach R, Cooksey KE, Peyton BM, Fields MW (2012) Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol Biofuels 5:1–17CrossRef
45.
go back to reference Fields MW, Hise A, Lohman EJ, Bell T, Gardner RD, Corredor L, Gerlach R (2014) Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Appl Microbiol Biot 98:4805–4816CrossRef Fields MW, Hise A, Lohman EJ, Bell T, Gardner RD, Corredor L, Gerlach R (2014) Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Appl Microbiol Biot 98:4805–4816CrossRef
46.
go back to reference Gao Y, Yang M, Wang C (2013) Nutrient deprivation enhances lipid content in marine microalgae. Bioresour Technol 147:484–491CrossRef Gao Y, Yang M, Wang C (2013) Nutrient deprivation enhances lipid content in marine microalgae. Bioresour Technol 147:484–491CrossRef
47.
go back to reference Halsey KH, O’Malley RT, Graff JR, Milligan AJ, Behrenfeld MJ (2013) A common partitioning strategy fro photosynthetic products in evolutionary distinct phytoplankton species. New Phytol 198:1030–1038CrossRef Halsey KH, O’Malley RT, Graff JR, Milligan AJ, Behrenfeld MJ (2013) A common partitioning strategy fro photosynthetic products in evolutionary distinct phytoplankton species. New Phytol 198:1030–1038CrossRef
48.
go back to reference Brown AP, Slabas AR, Rafferty JB (2009) Fatty acid biosynthesis in plants-metabolic pathways, structure and organization. In: Govindjee, Wada H, Murata N (eds) Lipids in photosynthesis: essential and regulatory functions, 30th edn., pp 11–34 Brown AP, Slabas AR, Rafferty JB (2009) Fatty acid biosynthesis in plants-metabolic pathways, structure and organization. In: Govindjee, Wada H, Murata N (eds) Lipids in photosynthesis: essential and regulatory functions, 30th edn., pp 11–34
49.
go back to reference Chu FF, Chu PN, Shen XF, Lam PK, Zeng RJ (2014) Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresour Technol 152:241–246CrossRef Chu FF, Chu PN, Shen XF, Lam PK, Zeng RJ (2014) Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresour Technol 152:241–246CrossRef
50.
go back to reference Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalgae Scenedesmus sp. Bioresour Technol 101:5494–5500CrossRef Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalgae Scenedesmus sp. Bioresour Technol 101:5494–5500CrossRef
51.
go back to reference Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636CrossRef Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636CrossRef
52.
go back to reference Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A et al (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:13415–13425CrossRef Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A et al (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:13415–13425CrossRef
Metadata
Title
Evaluation of Growth and Lipid Profiles in Six Different Microalgal Strains for Biofuel Production
Authors
Kashif M. Shaikh
Asha A. Nesamma
Malik Z. Abdin
Pavan P. Jutur
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6107-3_1