Skip to main content
Top

2024 | OriginalPaper | Chapter

Evaluation of Machine Learning Algorithms for Predicting Compressive Strength of Geopolymer Concrete at High Temperatures

Authors : Aashi Gupta, Prachi Sarda, Faisal Mehraj Wani, Jayaprakash Vemuri

Published in: Advances in Environmental Sustainability, Energy and Earth Science

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, fly ash and slag, both industrial by-products, have been integral to sustainable geopolymer concrete, but their fire resistance lacks clarity. The complex interaction between its composition and elevated temperatures has a significant impact on its resulting mechanical properties, thereby suggesting the need for precise predictive models. This significant knowledge gap can be bridged by using advanced machine learning methods to accurately forecast the compressive strength of sustainable geopolymer concrete under high-temperature conditions. In this study, an experimental dataset consisting of over 200 data points is collected from literature. Several machine learning techniques, encompassing linear regression, decision trees, support vector machine, Gaussian process regression, ensemble methods, neural networks, and kernel-based algorithms, are employed to forecast the compressive strength. Statistical and performance metrics for all machine learning models are tabulated to examine their efficiency. It is observed that the trilayered neural network model outperformed other algorithms, achieving an R2 value of 0.95 and MSE of 37.55. The study provides structural designers with a reliable computational tool for assessing the strength of green concrete exposed to elevated temperatures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shehab HK, Eisa AS, Wahba AM (2016) Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement. Constr Build Mater 126:560–565CrossRef Shehab HK, Eisa AS, Wahba AM (2016) Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement. Constr Build Mater 126:560–565CrossRef
2.
go back to reference Li Z, Yoon J, Zhang R, Rajabipour F, Srubar WV III, Dabo I, Radlińska A (2022) Machine learning in concrete science: applications, challenges, and best practices. npj Comp Material 8(1):127CrossRef Li Z, Yoon J, Zhang R, Rajabipour F, Srubar WV III, Dabo I, Radlińska A (2022) Machine learning in concrete science: applications, challenges, and best practices. npj Comp Material 8(1):127CrossRef
3.
go back to reference Ma CK, Awang AZ, Omar W (2018) Structural and material performance of geopolymer concrete: a review. Constr Build Mater 186:90–102CrossRef Ma CK, Awang AZ, Omar W (2018) Structural and material performance of geopolymer concrete: a review. Constr Build Mater 186:90–102CrossRef
4.
go back to reference Hadi MN, Al-Azzawi M, Yu T (2018) Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar. Constr Build Mater 175:41–54CrossRef Hadi MN, Al-Azzawi M, Yu T (2018) Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar. Constr Build Mater 175:41–54CrossRef
5.
go back to reference Fernández-Jimenez A, De La Torre AG, Palomo A, López-Olmo G, Alonso MM, Aranda MAG (2006) Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity. Fuel 85(5–6):625–634CrossRef Fernández-Jimenez A, De La Torre AG, Palomo A, López-Olmo G, Alonso MM, Aranda MAG (2006) Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity. Fuel 85(5–6):625–634CrossRef
7.
go back to reference Alaskar A, Alfalah G, Althoey F, Abuhussain MA, Javed MF, Deifalla AF, Ghamry NA (2023) Comparative study of genetic programming-based algorithms for predicting the compressive strength of concrete at elevated temperature. Case Stud Const Material 18:e02199CrossRef Alaskar A, Alfalah G, Althoey F, Abuhussain MA, Javed MF, Deifalla AF, Ghamry NA (2023) Comparative study of genetic programming-based algorithms for predicting the compressive strength of concrete at elevated temperature. Case Stud Const Material 18:e02199CrossRef
8.
go back to reference Peng S, Shen L, Du X, Wu B, Yu Z (2024) Dynamic mechanical properties and mechanisms of ordinary concrete after high temperature. J Mater Civ Eng 36(3):04023632CrossRef Peng S, Shen L, Du X, Wu B, Yu Z (2024) Dynamic mechanical properties and mechanisms of ordinary concrete after high temperature. J Mater Civ Eng 36(3):04023632CrossRef
9.
go back to reference Vadyala SR, Betgeri SN, Matthews JC, Matthews E (2022) A review of physics-based machine learning in civil engineering. Results Eng 13:100316CrossRef Vadyala SR, Betgeri SN, Matthews JC, Matthews E (2022) A review of physics-based machine learning in civil engineering. Results Eng 13:100316CrossRef
12.
go back to reference Husem M (2006) The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete. Fire Saf J 41:155–163CrossRef Husem M (2006) The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete. Fire Saf J 41:155–163CrossRef
13.
go back to reference Ergün A, Kürklü G, Serhat BM, Mansour MY (2013) The effect of cement dosage on mechanical properties of concrete exposed to high temperatures. Fire Saf J 55:160–167CrossRef Ergün A, Kürklü G, Serhat BM, Mansour MY (2013) The effect of cement dosage on mechanical properties of concrete exposed to high temperatures. Fire Saf J 55:160–167CrossRef
14.
go back to reference Cülfik MS, Özturan T (2010) Mechanical properties of normal and high strength concretes subjected to high temperatures and using image analysis to detect bond deteriorations. Constr Build Mater 24:1486–1493CrossRef Cülfik MS, Özturan T (2010) Mechanical properties of normal and high strength concretes subjected to high temperatures and using image analysis to detect bond deteriorations. Constr Build Mater 24:1486–1493CrossRef
15.
go back to reference Behnood A, Ziari H (2008) Effects of silica fume addition and water to cement ratio on the properties of highstrength concrete after exposure to high temperatures. Cem Concr Compos 30:106–112CrossRef Behnood A, Ziari H (2008) Effects of silica fume addition and water to cement ratio on the properties of highstrength concrete after exposure to high temperatures. Cem Concr Compos 30:106–112CrossRef
16.
go back to reference Bastami M, Baghbadrani M, Aslani F (2014) Performance of nano-silica modified high strength concrete at elevated temperatures. Constr Build Mater 68:402–408CrossRef Bastami M, Baghbadrani M, Aslani F (2014) Performance of nano-silica modified high strength concrete at elevated temperatures. Constr Build Mater 68:402–408CrossRef
17.
go back to reference Chen L, Fang Q, Jiang X, Ruan Z, Hong J (2015) Combined effects of high temperature and high strain rate on normal weight concrete. Int J Impact Eng 86:40–56CrossRef Chen L, Fang Q, Jiang X, Ruan Z, Hong J (2015) Combined effects of high temperature and high strain rate on normal weight concrete. Int J Impact Eng 86:40–56CrossRef
18.
go back to reference Xiong Y, Deng S, Wu D (2016) Experimental study on compressive strength recovery effect of fire-damaged high strength concrete after realkalisation treatment. Procedia Eng 135:476–481CrossRef Xiong Y, Deng S, Wu D (2016) Experimental study on compressive strength recovery effect of fire-damaged high strength concrete after realkalisation treatment. Procedia Eng 135:476–481CrossRef
19.
go back to reference Mousa MI (2017) Effect of elevated temperature on the properties of silica fume and recycled rubber-filled high strength concretes (RHSC). HBRC J 13:1–7CrossRef Mousa MI (2017) Effect of elevated temperature on the properties of silica fume and recycled rubber-filled high strength concretes (RHSC). HBRC J 13:1–7CrossRef
20.
go back to reference Fu YF, Wong YL, Poon CS, Tang CA (2005) Stress-strain behaviour of high-strength concrete at elevated temperatures. Mag Concr Res 57:535–544CrossRef Fu YF, Wong YL, Poon CS, Tang CA (2005) Stress-strain behaviour of high-strength concrete at elevated temperatures. Mag Concr Res 57:535–544CrossRef
21.
go back to reference Wani FM, Vemuri J (2024) Shapelet-informed machine learning classifiers: a path towards precise identification of pulse-like ground motions. J Earth Sys Sci 133(2) Wani FM, Vemuri J (2024) Shapelet-informed machine learning classifiers: a path towards precise identification of pulse-like ground motions. J Earth Sys Sci 133(2)
22.
go back to reference Wani FM, Vemuri J, Reddy KK, Rajaram C (2024) Forecasting duration characteristics of near fault pulse-like ground motions using machine learning algorithms. Stoch Env Res Risk A 1-30:98 Wani FM, Vemuri J, Reddy KK, Rajaram C (2024) Forecasting duration characteristics of near fault pulse-like ground motions using machine learning algorithms. Stoch Env Res Risk A 1-30:98
23.
go back to reference Wani FM, Vemuri J, Rajaram C, Reddy KK (2023) Investigating the efficiency of machine learning algorithms in classifying pulse-like ground motions. J Seismol 27(5):875–899CrossRef Wani FM, Vemuri J, Rajaram C, Reddy KK (2023) Investigating the efficiency of machine learning algorithms in classifying pulse-like ground motions. J Seismol 27(5):875–899CrossRef
Metadata
Title
Evaluation of Machine Learning Algorithms for Predicting Compressive Strength of Geopolymer Concrete at High Temperatures
Authors
Aashi Gupta
Prachi Sarda
Faisal Mehraj Wani
Jayaprakash Vemuri
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-73820-3_12