Skip to main content
Top

2020 | OriginalPaper | Chapter

Evaluation of the Effect of CO2 Cover Gas on the Rate of Oxidation of an AlMgSi Alloy

Authors : Cathrine Kyung Won Solem, Kai Erik Ekstrøm, Gabriella Tranell, Ragnhild E. Aune

Published in: Light Metals 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Small additions of beryllium (Be) to aluminum magnesium (AlMg) alloys have proven to decrease their oxidation rate during industrial liquid metal handling. As Be can cause respiratory health issues, it is desirable to evaluate alternative methods to inhibit the oxidation rate. Earlier work has revealed that small amounts of carbon dioxide (CO2) to the surrounding atmosphere has a positive effect. In the present study the oxidation behavior of an aluminum magnesium silicon (AlMgSi) alloy has been investigated using a Differential Scanning Calorimetric (DSC) unit equipped with a Thermogravimetric Analyzer (TGA). Changes in both the heat flux and the mass have been monitored during exposer to 20% argon (Ar) and 80% synthetic air, 99.999% pure Ar, and a gaseous mixture of 20% Ar, 76% synthetic air and 4% CO2 at 750 °C for 7 h. The results revealed a one-step mass gain when heated in synthetic air, giving a total mass gain of 12.33% and an oxide layer thickness of >15 µm. Pure Ar had a positive effect on the oxidation rate lowering the mass gain to 2.80% and a thickness of ~10 µm. A mass gain of only 0.46% and a continuous dense oxide layer of 200–400 nm, with an additional granular discontinuous oxide layer of ~2 µm underneath, was obtained during heating in 4% CO2. This confirms that even in the case of the AlMgSi alloy, small amounts of CO2 have a significant inhibiting effect on the oxidation rate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Surla, F. Valdivieso, M. Pijolat, M. Soustelle, and M. Prin, “Kinetic study of the oxidation by oxygen of liquid Al–Mg 5% alloys,” Solid State Ionics, vol. 143, no. 3, pp. 355–365, Jul. 2001. K. Surla, F. Valdivieso, M. Pijolat, M. Soustelle, and M. Prin, “Kinetic study of the oxidation by oxygen of liquid Al–Mg 5% alloys,” Solid State Ionics, vol. 143, no. 3, pp. 355–365, Jul. 2001.
2.
go back to reference N. Smith, B. Gleeson, W. A. Saidi, A. Kvithyld, and G. Tranell, “Mechanism behind the Inhibiting Effect of CO2 on the Oxidation of Al–Mg Alloys,” Ind. Eng. Chem. Res., vol. 58, no. 3, pp. 1434–1442, Jan. 2019. N. Smith, B. Gleeson, W. A. Saidi, A. Kvithyld, and G. Tranell, “Mechanism behind the Inhibiting Effect of CO2 on the Oxidation of Al–Mg Alloys,” Ind. Eng. Chem. Res., vol. 58, no. 3, pp. 1434–1442, Jan. 2019.
3.
go back to reference D. L. Belitskus, “Oxidation of molten Al-Mg alloy in air, air-SO2, and air-H2S atmospheres,” Oxid Met, vol. 3, no. 4, pp. 313–317, Jul. 1971. D. L. Belitskus, “Oxidation of molten Al-Mg alloy in air, air-SO2, and air-H2S atmospheres,” Oxid Met, vol. 3, no. 4, pp. 313–317, Jul. 1971.
4.
go back to reference G. Wightman and D. J. Fray, “The dynamic oxidation of aluminum and its alloys,” MTB, vol. 14, no. 4, pp. 625–631, Dec. 1983. G. Wightman and D. J. Fray, “The dynamic oxidation of aluminum and its alloys,” MTB, vol. 14, no. 4, pp. 625–631, Dec. 1983.
5.
go back to reference N. Ünlü and M. G. Drouet, “Comparison of salt-free aluminum dross treatment processes,” Resources, Conservation and Recycling, vol. 36, no. 1, pp. 61–72, Jul. 2002. N. Ünlü and M. G. Drouet, “Comparison of salt-free aluminum dross treatment processes,” Resources, Conservation and Recycling, vol. 36, no. 1, pp. 61–72, Jul. 2002.
6.
go back to reference N. Smith, “Methods of oxidation inhibition for Al–Mg alloys,” Ph.D. Thesis, NTNU, Norwegian University of Science and Technology, Trondheim, 2019. N. Smith, “Methods of oxidation inhibition for Al–Mg alloys,” Ph.D. Thesis, NTNU, Norwegian University of Science and Technology, Trondheim, 2019.
7.
go back to reference C. N. Cochran, D. L. Belitskus, and D. L. Kinosz, “Oxidation of aluminum-magnesium melts in air, oxygen, flue gas, and carbon dioxide,” MTB, vol. 8, no. 1, pp. 323–332, Mar. 1977. C. N. Cochran, D. L. Belitskus, and D. L. Kinosz, “Oxidation of aluminum-magnesium melts in air, oxygen, flue gas, and carbon dioxide,” MTB, vol. 8, no. 1, pp. 323–332, Mar. 1977.
8.
go back to reference H. Venugopalan and T. DebRoy, “Kinetics of directed oxidation of Al-Mg alloys into A12O3 preforms,” Materials Science and Engineering: A, vol. 232, no. 1, pp. 39–46, Jul. 1997. H. Venugopalan and T. DebRoy, “Kinetics of directed oxidation of Al-Mg alloys into A12O3 preforms,” Materials Science and Engineering: A, vol. 232, no. 1, pp. 39–46, Jul. 1997.
9.
go back to reference C. Blawert, N. Hort, and K. U. Kainer, “AUTOMOTIVE APPLICATIONS OF MAGNESIUM AND ITS ALLOYS,” TRANS. INDIAN INST. MET., vol. 57, no. 4, p. 12, 2004. C. Blawert, N. Hort, and K. U. Kainer, “AUTOMOTIVE APPLICATIONS OF MAGNESIUM AND ITS ALLOYS,” TRANS. INDIAN INST. MET., vol. 57, no. 4, p. 12, 2004.
10.
go back to reference C. N. Cochran and W. C. Sleppy, “Oxidation of high-purity aluminum and 5052 aluminum-magnesium alloy at elevated temperatures,” J. Electrochem. Soc., vol. 108, no. 4, pp. 322–327, Apr. 1961. C. N. Cochran and W. C. Sleppy, “Oxidation of high-purity aluminum and 5052 aluminum-magnesium alloy at elevated temperatures,” J. Electrochem. Soc., vol. 108, no. 4, pp. 322–327, Apr. 1961.
11.
go back to reference I. Haginoya and T. Fukusako, “Oxidation of molten Al–Mg alloys,” Trans. JIM, vol. 24, no. 9, pp. 613–619, 1983. I. Haginoya and T. Fukusako, “Oxidation of molten Al–Mg alloys,” Trans. JIM, vol. 24, no. 9, pp. 613–619, 1983.
12.
go back to reference J. Steglich, C. Matthies, M. Rosefort, and B. Friedrich, “Behavior of Mg–Si-rich phases in aluminum can sheets and their impact on metal oxidation during industrial thermal pre-treatment,” in Light Metals 2018, 2018, pp. 1123–1130. J. Steglich, C. Matthies, M. Rosefort, and B. Friedrich, “Behavior of Mg–Si-rich phases in aluminum can sheets and their impact on metal oxidation during industrial thermal pre-treatment,” in Light Metals 2018, 2018, pp. 1123–1130.
13.
go back to reference N. Smith, A. Kvithyld, and G. Tranell, “The mechanism behind the oxidation protection of high Mg Al alloys with beryllium,” Metall and Materi Trans B, vol. 49, no. 5, pp. 2846–2857, Oct. 2018. N. Smith, A. Kvithyld, and G. Tranell, “The mechanism behind the oxidation protection of high Mg Al alloys with beryllium,” Metall and Materi Trans B, vol. 49, no. 5, pp. 2846–2857, Oct. 2018.
14.
Metadata
Title
Evaluation of the Effect of CO2 Cover Gas on the Rate of Oxidation of an AlMgSi Alloy
Authors
Cathrine Kyung Won Solem
Kai Erik Ekstrøm
Gabriella Tranell
Ragnhild E. Aune
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-36408-3_154

Premium Partners