Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2023

13-03-2023

Evaluation of the Effect of Elevated Temperature and Preliminary Thermal Aging on the Residual Mechanical Properties of a Structural Fiberglass Using the Signals of Acoustic Emission

Authors: D. S. Lobanov, E. M. Lunegova

Published in: Mechanics of Composite Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper presents the results of mechanical tests on an aviation structural fiberglass based on a VPS-48 prepreg during quasi-static tests in the uniaxial tension and interlaminar shear. The results of studies on the effect of elevated temperature and preliminary thermal aging on the residual mechanical properties of the material were shown. Results of a preliminary thermal aging (under different regimes) on the mechanical characteristics, the nature of deformation and the implementation of various mechanisms of destruction the composite during interlaminar shear tests were obtained. The laws of changes in the properties of the thermally aged fiberglass during tensile and interlaminar shear tests were studied on the basis of a comprehensive analysis of its mechanical characteristics and AE signals. The time dependences of AE signal parameters for fiberglass specimens were obtained. The paper illustrates distributions of the frequency of spectral maximum of acoustic emission signals obtained after the destruction of specimens with different regimes of preliminary thermal aging presented graphically. An analysis of the microstructure of the surface of specimens before and after a preliminary thermal aging was carried out.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. S. Lobanov and A. V. Babushkin, “Experimental studies of the high temperature influence on strength and deformation properties of combined glass organoplastics,” PNRPU Mechanics Bull., No. 1, 104-117 (2017). D. S. Lobanov and A. V. Babushkin, “Experimental studies of the high temperature influence on strength and deformation properties of combined glass organoplastics,” PNRPU Mechanics Bull., No. 1, 104-117 (2017).
2.
go back to reference D. S. Lobanov and S. V. Slovikov, “Mechanical behavior of a unidirectional basalt-fiber-reinforced plastic under thermomechanical loadings,” Mech. Compos. Mater., 54, No. 3, 351-358 (2017).CrossRef D. S. Lobanov and S. V. Slovikov, “Mechanical behavior of a unidirectional basalt-fiber-reinforced plastic under thermomechanical loadings,” Mech. Compos. Mater., 54, No. 3, 351-358 (2017).CrossRef
3.
go back to reference D. S. Lobanov, A. V. Babushkin, and A. Yu. Luzenin, “Effect of increased temperatures on the deformation and strength characteristics of a GFRP based on a fabric of volumetric weave,” Mech. Compos. Mater., 54, No. 5, 655-664 (2018).CrossRef D. S. Lobanov, A. V. Babushkin, and A. Yu. Luzenin, “Effect of increased temperatures on the deformation and strength characteristics of a GFRP based on a fabric of volumetric weave,” Mech. Compos. Mater., 54, No. 5, 655-664 (2018).CrossRef
4.
go back to reference P. L. Nguyen, Vu X. Hong, and E. Ferrier, “Thermo-mechanical performance of Carbon Fiber Reinforced Polymer (CFRP), with and without fire protection material, under combined elevated temperature and mechanical loading conditions,” Compos., Part B, 169, 164-173 (2019). P. L. Nguyen, Vu X. Hong, and E. Ferrier, “Thermo-mechanical performance of Carbon Fiber Reinforced Polymer (CFRP), with and without fire protection material, under combined elevated temperature and mechanical loading conditions,” Compos., Part B, 169, 164-173 (2019).
5.
go back to reference T. Bittner, P. Tej, P. Bouška, and M. Vokáč, “Degradation of laminated glass as result of increased temperature,” Adv. Mater. Research, 923, 209-212 (2014).CrossRef T. Bittner, P. Tej, P. Bouška, and M. Vokáč, “Degradation of laminated glass as result of increased temperature,” Adv. Mater. Research, 923, 209-212 (2014).CrossRef
6.
go back to reference E. N. Kablov and V. O. Startsev, “The influence of internal stresses on the aging of polymer composite materials: a Review,” Mech. Compos. Mater., 57, No. 5, 565-579 (2021).CrossRef E. N. Kablov and V. O. Startsev, “The influence of internal stresses on the aging of polymer composite materials: a Review,” Mech. Compos. Mater., 57, No. 5, 565-579 (2021).CrossRef
7.
go back to reference P. Alam, C. Ó. Robert, and C. M. Brádaigh, “Tidal turbine blade composites—A review on the effects of hygrothermal aging on the properties of CFRP,” Compos., Part B, 149, 248-259 (2018). P. Alam, C. Ó. Robert, and C. M. Brádaigh, “Tidal turbine blade composites—A review on the effects of hygrothermal aging on the properties of CFRP,” Compos., Part B, 149, 248-259 (2018).
8.
go back to reference L. R. de Souza, A. T. Marques, and J. R. M. d’Almeida, “Effects of aging on water and lubricating oil on the creep behavior of a GFRP matrix composite,” Compos. Struct., 168, 285-291 (2017).CrossRef L. R. de Souza, A. T. Marques, and J. R. M. d’Almeida, “Effects of aging on water and lubricating oil on the creep behavior of a GFRP matrix composite,” Compos. Struct., 168, 285-291 (2017).CrossRef
9.
go back to reference D. S. Lobanov, V. E. Vildeman, A. D. Babin, and M. A. Grinev, “Experimental research into the effect of external actions and polluting environments on the serviceablity of fiber-reinforced polymer composite materials,” Mech. Compos. Mater., 51, No. 1, 97-108 (2015).CrossRef D. S. Lobanov, V. E. Vildeman, A. D. Babin, and M. A. Grinev, “Experimental research into the effect of external actions and polluting environments on the serviceablity of fiber-reinforced polymer composite materials,” Mech. Compos. Mater., 51, No. 1, 97-108 (2015).CrossRef
10.
go back to reference M. Muralidharan, T. P. Sathishkumar, N. Rajini, P. Navaneethakrishnan, S. Arun Kumar, S. O. Ismail, K. Senthilkumar, and S. Siengchin, “Evaluation of tensile strength retention and service life prediction of hydrothermal aged balanced orthotropic carbon/glass and Kevlar/glass fabric reinforced polymer hybrid composites,” J. App. Polymer Sci., 139, No. 6, 51602 (2022). https://doi.org/10.1002/app.51602 M. Muralidharan, T. P. Sathishkumar, N. Rajini, P. Navaneethakrishnan, S. Arun Kumar, S. O. Ismail, K. Senthilkumar, and S. Siengchin, “Evaluation of tensile strength retention and service life prediction of hydrothermal aged balanced orthotropic carbon/glass and Kevlar/glass fabric reinforced polymer hybrid composites,” J. App. Polymer Sci., 139, No. 6, 51602 (2022). https://​doi.​org/​10.​1002/​app.​51602
11.
go back to reference L. Mansouri, A. Djebbar, S. Khatir, and M. Abdel Wahab, “Effect of hygrothermal aging in distilled and saline water on the mechanical behaviour of mixed short fibre/woven composites,” Compos. Struct., 207, 816-825 (2019). L. Mansouri, A. Djebbar, S. Khatir, and M. Abdel Wahab, “Effect of hygrothermal aging in distilled and saline water on the mechanical behaviour of mixed short fibre/woven composites,” Compos. Struct., 207, 816-825 (2019).
12.
go back to reference Y. Chen, J. F. Davalos, and I. Ray, “Durability prediction for GFRP reinforcing bars using short-term data of accelerated aging tests,” J. Compos. for Construction, 10, No. 4, 279-286 (2006).CrossRef Y. Chen, J. F. Davalos, and I. Ray, “Durability prediction for GFRP reinforcing bars using short-term data of accelerated aging tests,” J. Compos. for Construction, 10, No. 4, 279-286 (2006).CrossRef
14.
go back to reference Y. Li, R. Li, L. Huang, K. Wang, and X. Huang, “Effect of hygrothermal aging on the damage characteristics of carbon woven fabric/epoxy laminates subjected to simulated lightning strike,” Mater. and Design, 99, 477-489 (2016).CrossRef Y. Li, R. Li, L. Huang, K. Wang, and X. Huang, “Effect of hygrothermal aging on the damage characteristics of carbon woven fabric/epoxy laminates subjected to simulated lightning strike,” Mater. and Design, 99, 477-489 (2016).CrossRef
15.
go back to reference K.-A. Kalteremidou, D. G. Aggelis, D. Van Hemelrijck, and L. Pyl, “On the use of acoustic emission to identify the dominant stress/strain component in carbon/epoxy composite materials,” Mech. Research Communications, 111, 103663 (2021)CrossRef K.-A. Kalteremidou, D. G. Aggelis, D. Van Hemelrijck, and L. Pyl, “On the use of acoustic emission to identify the dominant stress/strain component in carbon/epoxy composite materials,” Mech. Research Communications, 111, 103663 (2021)CrossRef
16.
go back to reference E. M. Strungar, D. S. Lobanov, E. M. Zubova, and A. V. Babushkin, “Analysis of the mechanical behavior of spatially reinforced composites with open holes,” IOP Conf. Series: Mater. Sci. and Eng., 953, 012094 (2020). E. M. Strungar, D. S. Lobanov, E. M. Zubova, and A. V. Babushkin, “Analysis of the mechanical behavior of spatially reinforced composites with open holes,” IOP Conf. Series: Mater. Sci. and Eng., 953, 012094 (2020).
17.
go back to reference M. Suedifar, “Barely visible impact damage assessment in laminated composites using AE, Compos., Part B, 152, 180-192 (2018). M. Suedifar, “Barely visible impact damage assessment in laminated composites using AE, Compos., Part B, 152, 180-192 (2018).
18.
go back to reference I. E. Tabrizi, A. Kefal, J. S. M. Zanjani, C. Akalin, and M. Yildiz, “Experimental and numerical investigation on fracture behavior of glass/carbon fiber hybrid composites using acoustic emission method and refined zigzag theory,” Compos. Struct., 223, 110971 (2019).CrossRef I. E. Tabrizi, A. Kefal, J. S. M. Zanjani, C. Akalin, and M. Yildiz, “Experimental and numerical investigation on fracture behavior of glass/carbon fiber hybrid composites using acoustic emission method and refined zigzag theory,” Compos. Struct., 223, 110971 (2019).CrossRef
19.
go back to reference O. V. Bashkov, A. A. Bryansky, S. V. Panin, and V. I. Zaikov, “Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission,” AIP Conf. Proc., (2016). ISBN 9780735414457. O. V. Bashkov, A. A. Bryansky, S. V. Panin, and V. I. Zaikov, “Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission,” AIP Conf. Proc., (2016). ISBN 9780735414457.
20.
go back to reference Non-Destructive Testing, Handbook in 8 Vols. /Ed. V. V. Klyuev, Vol. 7 in two books: V. I. Ivanov and I. E. Vlasov, Acoustic Emission Method, and F. Ya. Balitsky, A. V. Barkov, N. A. Barkova, et al., Vibrodiagnostics, [in Russian] Mashinostroenie, Moscow (2005). Non-Destructive Testing, Handbook in 8 Vols. /Ed. V. V. Klyuev, Vol. 7 in two books: V. I. Ivanov and I. E. Vlasov, Acoustic Emission Method, and F. Ya. Balitsky, A. V. Barkov, N. A. Barkova, et al., Vibrodiagnostics, [in Russian] Mashinostroenie, Moscow (2005).
21.
go back to reference A. Pollock, “Acoustic Emission Inspection,” in: Metals Handbook, Ninth Edition, ASM International, No. 17, 278-294 (1989). A. Pollock, “Acoustic Emission Inspection,” in: Metals Handbook, Ninth Edition, ASM International, No. 17, 278-294 (1989).
22.
go back to reference L. Li, S. V. Lomov, X. Yan, and V. Carvelli, “Cluster analysis of acoustic emission signals for 2D and 3D woven glass/ epoxy composites,” Compos. Struct., 116, 286-299 (2014).CrossRef L. Li, S. V. Lomov, X. Yan, and V. Carvelli, “Cluster analysis of acoustic emission signals for 2D and 3D woven glass/ epoxy composites,” Compos. Struct., 116, 286-299 (2014).CrossRef
23.
go back to reference R. G. Liptai, Acoustic Emission from Composite Materials. Composite Materials: Testing and Design (2nd Conf.) (1972). R. G. Liptai, Acoustic Emission from Composite Materials. Composite Materials: Testing and Design (2nd Conf.) (1972).
24.
go back to reference P. F. Liu, J. K. Chu, Y. L. Liu, and J. Y. Zheng, “A study on the failure mechanism of carbon fiber/epoxy composite laminates using acoustic emission,” Mater. and Design, 37, 228-235 (2012).CrossRef P. F. Liu, J. K. Chu, Y. L. Liu, and J. Y. Zheng, “A study on the failure mechanism of carbon fiber/epoxy composite laminates using acoustic emission,” Mater. and Design, 37, 228-235 (2012).CrossRef
25.
go back to reference C. Barile, C. Casavola, G. Pappalettera, and P. K. Vimalathithan, “Damage characterization in composite materials using acoustic emission signal-based and parameter-based data,” Compos., Part B, 178, 107469 (2019). C. Barile, C. Casavola, G. Pappalettera, and P. K. Vimalathithan, “Damage characterization in composite materials using acoustic emission signal-based and parameter-based data,” Compos., Part B, 178, 107469 (2019).
26.
go back to reference V. Arumugam, K. Saravanakumar, and C. Santulli, “Damage characterization of stiffened glass-epoxy laminates under tensile loading with acoustic emission monitoring / Compos., Part B, 147, 22-32 (2018). V. Arumugam, K. Saravanakumar, and C. Santulli, “Damage characterization of stiffened glass-epoxy laminates under tensile loading with acoustic emission monitoring / Compos., Part B, 147, 22-32 (2018).
27.
go back to reference K. Saravanakumar and V. Arumugam, “Effect of milled glass fibers on quasi-static indentation and tensile behavior of tapered laminates under acoustic emission monitoring,” Eng. Fracture Mech., 201, 36-46 (2018).CrossRef K. Saravanakumar and V. Arumugam, “Effect of milled glass fibers on quasi-static indentation and tensile behavior of tapered laminates under acoustic emission monitoring,” Eng. Fracture Mech., 201, 36-46 (2018).CrossRef
28.
go back to reference N. Beheshtizadeh, A. Mostafapour, and S. Davoodi, “Three point bending test of glass/epoxy composite health monitoring by acoustic emission,” Alexandria Eng. J., 58, Is. 2, 567-578 (2019). N. Beheshtizadeh, A. Mostafapour, and S. Davoodi, “Three point bending test of glass/epoxy composite health monitoring by acoustic emission,” Alexandria Eng. J., 58, Is. 2, 567-578 (2019).
30.
go back to reference D. S. Lobanov and E. M. Zubova, “Research of temperature aging effects on mechanical behavior and properties of composite material by tensile tests with used system of registration acoustic emission signal,” Procedia Structural Integrity, 18, 347-352 (2019).CrossRef D. S. Lobanov and E. M. Zubova, “Research of temperature aging effects on mechanical behavior and properties of composite material by tensile tests with used system of registration acoustic emission signal,” Procedia Structural Integrity, 18, 347-352 (2019).CrossRef
31.
go back to reference D. S. Lobanov, E. M. Zubova, and A. I. Mugatarov, “Influence of preliminary thermal aging on the residual interlayer strength and staging of damage accumulations in structural carbon plastic,” PNRPU Mechanics Bull., No. 1, 41-51 (2021). D. S. Lobanov, E. M. Zubova, and A. I. Mugatarov, “Influence of preliminary thermal aging on the residual interlayer strength and staging of damage accumulations in structural carbon plastic,” PNRPU Mechanics Bull., No. 1, 41-51 (2021).
32.
go back to reference A. R. Oskouei, H. Heidary, M. Ahmadi, and M. Farajpur, “Unsupervised acoustic emission data clustering for the analysis of damage mechanisms in glass/polyester composites,” Mater. and Design., 37, 416-422 (2012). A. R. Oskouei, H. Heidary, M. Ahmadi, and M. Farajpur, “Unsupervised acoustic emission data clustering for the analysis of damage mechanisms in glass/polyester composites,” Mater. and Design., 37, 416-422 (2012).
33.
go back to reference C. Barile, C. Casavola, G. Pappalettera, P. K. Vimalathithana, “Experimental wavelet analysis of acoustic emission signal propagation in CFRP,” Eng. Fracture Mech., 210, 400-407 (2019).CrossRef C. Barile, C. Casavola, G. Pappalettera, P. K. Vimalathithana, “Experimental wavelet analysis of acoustic emission signal propagation in CFRP,” Eng. Fracture Mech., 210, 400-407 (2019).CrossRef
34.
go back to reference Z. Hamam, N. Godin, C. Fusco, and T. Monnier, “Modeling of acoustic emission signals due to fiber break in a model composite carbon/epoxy: experimental validation and parametric study,” Appl. Sci. (Switzerland), 9, No. 23, 5124 (2019). Z. Hamam, N. Godin, C. Fusco, and T. Monnier, “Modeling of acoustic emission signals due to fiber break in a model composite carbon/epoxy: experimental validation and parametric study,” Appl. Sci. (Switzerland), 9, No. 23, 5124 (2019).
Metadata
Title
Evaluation of the Effect of Elevated Temperature and Preliminary Thermal Aging on the Residual Mechanical Properties of a Structural Fiberglass Using the Signals of Acoustic Emission
Authors
D. S. Lobanov
E. M. Lunegova
Publication date
13-03-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10084-z

Other articles of this Issue 1/2023

Mechanics of Composite Materials 1/2023 Go to the issue

Premium Partners