Skip to main content
Top
Published in: Mechanics of Composite Materials 5/2021

19-11-2021

Evaluation of the Viscoplastic Strain of High-Density Polyethylene/Multiwall Carbon Nanotube Composites Using the Reaction Rate Relation

Authors: K. Aniskevich, O. Starkova

Published in: Mechanics of Composite Materials | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel semiempirical method for separating the viscoplastic strains from the total creep strains is proposed and validated by examples of high-density polyethylene (HDPE)/multiwall carbon nanotube (MWCNT) nanocomposites. The method is based on Eyring’s reaction rate relation and an analysis of creep data in semilogarithmic strain rate–strain coordinates. The initial linear part of the relation corresponds to the reversible viscoelastic behavior, but the deviation from it is related to the accumulation of viscoplastic strains. The viscoplastic strains are determined by simple calculations using four approximation coefficients determined from two linear parts of the strain rate–strain relation. A common relationship between the viscoplastic and total creep strains is established from data of 57 creep and creep recovery tests for samples filled with various content of MWCNTs and performed under for different stresses and loading times. The validity of the method is proved by the existence of a reasonable correlation between the calculated viscoplastic strains and the residual strains measured experimentally at the creep recovery stage. The method proposed contributes to an effective assessment of viscoplastic strains found from creep tests with no need to study the creep recovery.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I. M. Ward and J. Sweeney, An Introduction to the Mechanical Properties of Solid Polymers, John Wiley & Sons, Ltd., West Sussex (2004). I. M. Ward and J. Sweeney, An Introduction to the Mechanical Properties of Solid Polymers, John Wiley & Sons, Ltd., West Sussex (2004).
2.
go back to reference K. Aniskevich, O. Starkova, J. Jansons, and A. Aniskevich, Long-Term Deformability and Aging of Polymer Matrix Composites. Nova Science Publishers. ISBN: 978-1-61470-406-5 (2011). K. Aniskevich, O. Starkova, J. Jansons, and A. Aniskevich, Long-Term Deformability and Aging of Polymer Matrix Composites. Nova Science Publishers. ISBN: 978-1-61470-406-5 (2011).
3.
go back to reference M. Megnis and J. Varna, “Nonlinear viscoelastic, viscoplastic characterization of unidirectional GF/EP composite,” Mech. Time-Dependent Mater., 7, 269-290 (2003).CrossRef M. Megnis and J. Varna, “Nonlinear viscoelastic, viscoplastic characterization of unidirectional GF/EP composite,” Mech. Time-Dependent Mater., 7, 269-290 (2003).CrossRef
4.
go back to reference P. Dasappa, P. Lee-Sullivan, and X. Xiao. “Development of viscoplastic strains during creep in continuous fibre GMT composites,” Composites: Part B, 41, 48-57 (2010).CrossRef P. Dasappa, P. Lee-Sullivan, and X. Xiao. “Development of viscoplastic strains during creep in continuous fibre GMT composites,” Composites: Part B, 41, 48-57 (2010).CrossRef
5.
go back to reference S. P. Zaoutsos and G. C. Papanicolaou, “On the influence of preloading in the nonlinear viscoelastic-viscoplastic response of carbon-epoxy composites,” Compos. Sci. and Technol., 70, 922-929 (2010).CrossRef S. P. Zaoutsos and G. C. Papanicolaou, “On the influence of preloading in the nonlinear viscoelastic-viscoplastic response of carbon-epoxy composites,” Compos. Sci. and Technol., 70, 922-929 (2010).CrossRef
6.
go back to reference L. Pupure, S. Saseendran, and J. Varna, “Effect of degree of cure on viscoplastic shear strain development in layers of [45/-45]s GF/EP composites,” J. Compos. Mater., 52, No. 24, 3277-3288 (2018).CrossRef L. Pupure, S. Saseendran, and J. Varna, “Effect of degree of cure on viscoplastic shear strain development in layers of [45/-45]s GF/EP composites,” J. Compos. Mater., 52, No. 24, 3277-3288 (2018).CrossRef
7.
go back to reference A. V. Khokhlov, “Applicability indicators and identification techniques for a nonlinear Maxwell-type elastoviscoplastic model using loading-unloading curves,” Mech. Compos. Mater., 55, 195-210 (2019).CrossRef A. V. Khokhlov, “Applicability indicators and identification techniques for a nonlinear Maxwell-type elastoviscoplastic model using loading-unloading curves,” Mech. Compos. Mater., 55, 195-210 (2019).CrossRef
8.
go back to reference L. J. Zapas and J. M. Crissman, “Creep and recovery behaviour of ultra-high molecular weight polyethylene in the region of small uniaxial deformations,” Polymer, 25, 57-62 (1984).CrossRef L. J. Zapas and J. M. Crissman, “Creep and recovery behaviour of ultra-high molecular weight polyethylene in the region of small uniaxial deformations,” Polymer, 25, 57-62 (1984).CrossRef
9.
go back to reference J. Varna and L. Pupure, “Characterization of viscoelasticity, viscoplasticity, and damage in composites.” In: R. Guedes (ed), Creep and Fatigue in Polymer Matrix Composites (2nd Edition) Woodhead Publishing Series in Composites Science and Engineering, 497-530 (2019). J. Varna and L. Pupure, “Characterization of viscoelasticity, viscoplasticity, and damage in composites.” In: R. Guedes (ed), Creep and Fatigue in Polymer Matrix Composites (2nd Edition) Woodhead Publishing Series in Composites Science and Engineering, 497-530 (2019).
10.
go back to reference L. M. Kachanov, “On the creep fracture time,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 26-31 (1958) [in Russian]. L. M. Kachanov, “On the creep fracture time,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 26-31 (1958) [in Russian].
11.
go back to reference Yu. N. Rabotnov, Creep of Structural Elements, Nauka, Moscow (1966); North-Holland, Amsterdam, (1969). Yu. N. Rabotnov, Creep of Structural Elements, Nauka, Moscow (1966); North-Holland, Amsterdam, (1969).
12.
go back to reference J.-S. Kim and A. H. Muliana, “A combined viscoelastic-viscoplastic behavior of particle reinforced composites,” Int. J. Solids and Structures, 47, 580-594 (2010).CrossRef J.-S. Kim and A. H. Muliana, “A combined viscoelastic-viscoplastic behavior of particle reinforced composites,” Int. J. Solids and Structures, 47, 580-594 (2010).CrossRef
13.
go back to reference A. Muliana, “Nonlinear viscoelastic-degradation model for polymeric based materials,” Int. J. Solids and Structures, 51, No. 1, 122-132 (2014).CrossRef A. Muliana, “Nonlinear viscoelastic-degradation model for polymeric based materials,” Int. J. Solids and Structures, 51, No. 1, 122-132 (2014).CrossRef
14.
go back to reference R. A. Shapery, “On the characterization of nonlinear viscoelastic materials,” Polym. Eng. & Sci. 9, No 4, 295-310 (1969).CrossRef R. A. Shapery, “On the characterization of nonlinear viscoelastic materials,” Polym. Eng. & Sci. 9, No 4, 295-310 (1969).CrossRef
15.
go back to reference A. S. Krausz and H. Eyring, Deformation Kinetics, John Wiley & Sons, New York (1975). A. S. Krausz and H. Eyring, Deformation Kinetics, John Wiley & Sons, New York (1975).
16.
go back to reference H. Eyring. “Viscosity, plasticity, and diffusion as examples of absolute reaction rates,” J. Chem. Phys., No. 4, 283-295 (1963). H. Eyring. “Viscosity, plasticity, and diffusion as examples of absolute reaction rates,” J. Chem. Phys., No. 4, 283-295 (1963).
17.
go back to reference G. Spathis and E. Kontou, “Creep failure time prediction of polymers and polymer composites”, Compos. Sci. Technol., 72, 959-964 (2012).CrossRef G. Spathis and E. Kontou, “Creep failure time prediction of polymers and polymer composites”, Compos. Sci. Technol., 72, 959-964 (2012).CrossRef
18.
go back to reference E. Kontou, “Creep analysis of polymer matrix composites using viscoplastic models,” In: R. Guedes (ed.), Creep and Fatigue in Polymer Matrix Composites (2nd edition), Woodhead Publishing Series in Composites Science and Engineering, 215-248 (2019). E. Kontou, “Creep analysis of polymer matrix composites using viscoplastic models,” In: R. Guedes (ed.), Creep and Fatigue in Polymer Matrix Composites (2nd edition), Woodhead Publishing Series in Composites Science and Engineering, 215-248 (2019).
19.
go back to reference H. Altenbach, A. Kutschke, A. Girchenko, and K. Naumenko, “Creep behavior modeling of polyoxymethylene (POM) applying rheological models,” In: Holm Altenbach and Michael Brünig (eds.), Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading, Springer International Publishing, 1-16 (2015). H. Altenbach, A. Kutschke, A. Girchenko, and K. Naumenko, “Creep behavior modeling of polyoxymethylene (POM) applying rheological models,” In: Holm Altenbach and Michael Brünig (eds.), Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading, Springer International Publishing, 1-16 (2015).
20.
go back to reference B. Voight, “A relation to describe rate-dependent material failure,” Science, 243, No. 4888, 200-203 (1989).CrossRef B. Voight, “A relation to describe rate-dependent material failure,” Science, 243, No. 4888, 200-203 (1989).CrossRef
21.
go back to reference J. Corcoran and C. M. Davies, “Monitoring power-law creep using the failure forecast method,” Int. J. Mech. Sci., 140, 179-188 (2018).CrossRef J. Corcoran and C. M. Davies, “Monitoring power-law creep using the failure forecast method,” Int. J. Mech. Sci., 140, 179-188 (2018).CrossRef
22.
go back to reference O. D. Sherby and J. E. Dorn, “Anelastic creep of polymethyl methacrylate,” Mech Phys Solid., 6, 145-162 (1958).CrossRef O. D. Sherby and J. E. Dorn, “Anelastic creep of polymethyl methacrylate,” Mech Phys Solid., 6, 145-162 (1958).CrossRef
23.
go back to reference O. Erartsın, M. van Drongelen, and L. E. Govaert, “Identification of plasticity-controlled creep and fatigue failure mechanisms in transversely loaded unidirectional thermoplastic composites,” J. Compos. Mater., (2020) (in press). O. Erartsın, M. van Drongelen, and L. E. Govaert, “Identification of plasticity-controlled creep and fatigue failure mechanisms in transversely loaded unidirectional thermoplastic composites,” J. Compos. Mater., (2020) (in press).
24.
go back to reference T. B. van Erp, C. T. Reynolds, T. Peijs, J. A. W. van Dommelen, and L. E. Govaert, “Prediction of yield and long-term failure of oriented polypropylene: kinetics and anisotropy,” J. Polymer Sci., Part B: Polymer Physics, 47, 2026-2035 (2009).CrossRef T. B. van Erp, C. T. Reynolds, T. Peijs, J. A. W. van Dommelen, and L. E. Govaert, “Prediction of yield and long-term failure of oriented polypropylene: kinetics and anisotropy,” J. Polymer Sci., Part B: Polymer Physics, 47, 2026-2035 (2009).CrossRef
25.
go back to reference O. Starkova, K. Aniskevich, J. Sevcenko, O. Bulderberga, and A. Aniskevich, “Relationship between the residual and total strain from creep recovery tests of polypropylene/multiwall carbon nanotube composites,” J. Appl. Polym. Sci., 138, No. 10, 49-57 (2021).CrossRef O. Starkova, K. Aniskevich, J. Sevcenko, O. Bulderberga, and A. Aniskevich, “Relationship between the residual and total strain from creep recovery tests of polypropylene/multiwall carbon nanotube composites,” J. Appl. Polym. Sci., 138, No. 10, 49-57 (2021).CrossRef
26.
go back to reference O. Starkova, J. Sevcenko, S. Stankevich, O. Bulderberga, and A. Aniskevich. “Creep of high density polyethylene filled with multiwall carbon nanotubes,” J. Phys. Conf. Ser., 1431, 012005, (2020).CrossRef O. Starkova, J. Sevcenko, S. Stankevich, O. Bulderberga, and A. Aniskevich. “Creep of high density polyethylene filled with multiwall carbon nanotubes,” J. Phys. Conf. Ser., 1431, 012005, (2020).CrossRef
Metadata
Title
Evaluation of the Viscoplastic Strain of High-Density Polyethylene/Multiwall Carbon Nanotube Composites Using the Reaction Rate Relation
Authors
K. Aniskevich
O. Starkova
Publication date
19-11-2021
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 5/2021
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-021-09980-z

Other articles of this Issue 5/2021

Mechanics of Composite Materials 5/2021 Go to the issue

Premium Partners