Skip to main content
Top

2015 | OriginalPaper | Chapter

17. Evaluation of Thermal Properties of Refrigerant Clathrates with Additives

Authors : Sayem Zafar, Ibrahim Dincer, Mohamed Gadalla

Published in: Progress in Clean Energy, Volume 1

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A modeling study is conducted to evaluate the heat transfer capabilities of novel refrigerant clathrate-based phase change materials with salts and nanoparticles as additives. The formation of refrigerant clathrates is studied for both active and passive cooling applications. In this regard, the refrigerants, e.g., R134a, R141b, and R32 clathrates are studied at different refrigerant mass fractions since the solubility of refrigerants, in water, change with change in temperature. The sodium chloride and magnesium nitrate hexahydrate are used as salt additives. The nanoparticles of pure aluminum, copper, and graphene are also studied to investigate the improvement in their thermal properties. Some empirical correlations are used to predict the thermal conductivities of refrigerant clathrates and the improvement with the addition of additives. The results show that an increase in refrigerant mass fraction lowers the thermal conductivity of the refrigerant clathrate but not extensively. The addition of salts results in a minor improvement in thermal conductivity. The inclusion of nanoparticles significantly improved the thermal conductivity of the phase change material. It is also obtained that adding the nanoparticles improves the thermal conductivity more than the salts. The specific heat capacity, however, was not generally improved by the nanoparticles as it depended on the additive used.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dincer I, Rosen MA (2002) Thermal energy storage—systems and applications. Wiley, Chichester Dincer I, Rosen MA (2002) Thermal energy storage—systems and applications. Wiley, Chichester
2.
go back to reference George A (1989) Hand book of thermal design. In: Guyer C (ed) Phase change thermal storage materials, chap 1. McGraw Hill, New York George A (1989) Hand book of thermal design. In: Guyer C (ed) Phase change thermal storage materials, chap 1. McGraw Hill, New York
3.
go back to reference Sloan ED (1990) Clathrate hydrates of natural gases. Marcel, New York Sloan ED (1990) Clathrate hydrates of natural gases. Marcel, New York
4.
go back to reference Nikbakhta F, Izadpanaha AA, Varaminianb F, Mohammadic AH (2012) Thermodynamic modeling of hydrate dissociation conditions for refrigerants R-134a, R-141b and R-152a. Int J Refrig 35:1914–1920CrossRef Nikbakhta F, Izadpanaha AA, Varaminianb F, Mohammadic AH (2012) Thermodynamic modeling of hydrate dissociation conditions for refrigerants R-134a, R-141b and R-152a. Int J Refrig 35:1914–1920CrossRef
5.
go back to reference Mori YH, Isobe F (1991) A model for gas hydrate formation accompanying direct-contact evaporation of refrigerant drops in water. Int Commun Heat Mass Transfer 18:599–608CrossRef Mori YH, Isobe F (1991) A model for gas hydrate formation accompanying direct-contact evaporation of refrigerant drops in water. Int Commun Heat Mass Transfer 18:599–608CrossRef
6.
go back to reference Bi YH, Guo TW, Zhu TY, Fan SS, Liang DQ, Zhang L (2004) Influence of volumetric-flow rate in the crystallizer on the gas-hydrate cool-storage process in a new gas-hydrate cool-storage system. Appl Energy 78:111–112CrossRef Bi YH, Guo TW, Zhu TY, Fan SS, Liang DQ, Zhang L (2004) Influence of volumetric-flow rate in the crystallizer on the gas-hydrate cool-storage process in a new gas-hydrate cool-storage system. Appl Energy 78:111–112CrossRef
7.
go back to reference Inaba H (2000) New challenge in advanced thermal energy transportation using functionally thermal fluids. Int J Therm Sci 39:991–1003CrossRef Inaba H (2000) New challenge in advanced thermal energy transportation using functionally thermal fluids. Int J Therm Sci 39:991–1003CrossRef
8.
go back to reference Eslamimanesha A, Mohammadia AH, Richona D (2011) Thermodynamic model for predicting phase equilibria of simple clathrate hydrates of refrigerants. Chem Eng Sci 66:5439–5445CrossRef Eslamimanesha A, Mohammadia AH, Richona D (2011) Thermodynamic model for predicting phase equilibria of simple clathrate hydrates of refrigerants. Chem Eng Sci 66:5439–5445CrossRef
9.
go back to reference Guo KH, Shu BF, Zhang Y (1996) Transient behavior of energy charge–discharge and solid–liquid phase change in mixed gas-hydrate formation. In: Wang BX (ed) Heat transfer science and technology. Higher Education Press, Beijing, pp 728–733 Guo KH, Shu BF, Zhang Y (1996) Transient behavior of energy charge–discharge and solid–liquid phase change in mixed gas-hydrate formation. In: Wang BX (ed) Heat transfer science and technology. Higher Education Press, Beijing, pp 728–733
10.
go back to reference Bi Y, Guo T, Zhu T, Zhang L, Chen L (2006) Influences of additives on the gas hydrate cool storage process in a new gas hydrate cool storage system. Energy Convers Manag 47:2974–2982CrossRef Bi Y, Guo T, Zhu T, Zhang L, Chen L (2006) Influences of additives on the gas hydrate cool storage process in a new gas hydrate cool storage system. Energy Convers Manag 47:2974–2982CrossRef
11.
go back to reference Bi Y, Guo T, Zhang L, Zhang H, Chen L (2009) Experimental study on cool release process of gas-hydrate with additives. Energy Build 41:120–124CrossRef Bi Y, Guo T, Zhang L, Zhang H, Chen L (2009) Experimental study on cool release process of gas-hydrate with additives. Energy Build 41:120–124CrossRef
13.
go back to reference Ro ST, Kim JY, Kim DS (1995) Thermal conductivity of R32 and its mixture with R134a. Int J Thermophys 16:1193–1201CrossRef Ro ST, Kim JY, Kim DS (1995) Thermal conductivity of R32 and its mixture with R134a. Int J Thermophys 16:1193–1201CrossRef
14.
go back to reference Wua J, Wangb S (2012) Research on cool storage and release characteristics of R134a gas hydrate with additive. Energy Build 45:99–105CrossRef Wua J, Wangb S (2012) Research on cool storage and release characteristics of R134a gas hydrate with additive. Energy Build 45:99–105CrossRef
15.
go back to reference Murshed SMS, Leong KC, Yang C (2009) A combined model for the effective thermal conductivity of nanofluids. Appl Therm Eng 29:2477–2483CrossRef Murshed SMS, Leong KC, Yang C (2009) A combined model for the effective thermal conductivity of nanofluids. Appl Therm Eng 29:2477–2483CrossRef
16.
go back to reference Duangthongsuk W, Wongwises S (2009) Measurement of temperature dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Therm Fluid Sci 33:706–714CrossRef Duangthongsuk W, Wongwises S (2009) Measurement of temperature dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Therm Fluid Sci 33:706–714CrossRef
17.
go back to reference Moghadassi AR, Hosseini SM, Henneke DE (2010) Effect of CuO nanoparticles in enhancing the thermal conductivities of monoethylene glycol and paraffin fluids. Ind Eng Chem Res 49:1900–1904CrossRef Moghadassi AR, Hosseini SM, Henneke DE (2010) Effect of CuO nanoparticles in enhancing the thermal conductivities of monoethylene glycol and paraffin fluids. Ind Eng Chem Res 49:1900–1904CrossRef
18.
go back to reference Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720CrossRef Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720CrossRef
19.
go back to reference Lia J, Liangb D, Guob K, Wangc R, Fanb S (2006) Formation and dissociation of HFC134a gas hydrate in nano-copper suspension. Energy Convers Manag 47:201–210CrossRef Lia J, Liangb D, Guob K, Wangc R, Fanb S (2006) Formation and dissociation of HFC134a gas hydrate in nano-copper suspension. Energy Convers Manag 47:201–210CrossRef
20.
go back to reference Dutil Y, Rousse DR, Salah NB, Lassue S, Zalewski L (2011) A review on phase-change materials: mathematical modeling and simulations. Renew Sustain Energy Rev 15:112–130CrossRef Dutil Y, Rousse DR, Salah NB, Lassue S, Zalewski L (2011) A review on phase-change materials: mathematical modeling and simulations. Renew Sustain Energy Rev 15:112–130CrossRef
21.
go back to reference Phelan PE, Bhattacharya P, Prasher RS (2005) Nanofluids for heat transfer applications. Annu Rev Heat Transf 14:255–275CrossRef Phelan PE, Bhattacharya P, Prasher RS (2005) Nanofluids for heat transfer applications. Annu Rev Heat Transf 14:255–275CrossRef
22.
go back to reference Prasher R, Bhattacharya P, Phelan PE (2006) Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transf 128:588–595CrossRef Prasher R, Bhattacharya P, Phelan PE (2006) Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transf 128:588–595CrossRef
23.
go back to reference Hernandez O (2001) SIDS initial assessment report for 12th SIAM. UNEP Publications, Paris Hernandez O (2001) SIDS initial assessment report for 12th SIAM. UNEP Publications, Paris
24.
go back to reference DuPont™ Suva® refrigerants (2004) Mutual solubility of select HCFCs and HFCs and water. DuPont, USA DuPont™ Suva® refrigerants (2004) Mutual solubility of select HCFCs and HFCs and water. DuPont, USA
25.
go back to reference Poolen LJV, Holcom CD, Niesen VG (1997) Critical temperature and density from liquid-vapor coexistence data: application to refrigerants R32, R124, and R152a. Fluid Phase Equilib 129:105–111CrossRef Poolen LJV, Holcom CD, Niesen VG (1997) Critical temperature and density from liquid-vapor coexistence data: application to refrigerants R32, R124, and R152a. Fluid Phase Equilib 129:105–111CrossRef
26.
go back to reference Papadaki M, Schmitt M, Seitz A, Stephan K, Taxis B, Wakeham WA (1993) Thermal conductivity of R134a and R141b within the temperature range 240–307 K at the saturation vapor pressure. Int J Thermophys 14:173–181CrossRef Papadaki M, Schmitt M, Seitz A, Stephan K, Taxis B, Wakeham WA (1993) Thermal conductivity of R134a and R141b within the temperature range 240–307 K at the saturation vapor pressure. Int J Thermophys 14:173–181CrossRef
27.
go back to reference Benedito JCC, Guedes RC, Pai-Panandikerb RS, Castrob CAN (2001) Hydrogen bonding and the dipole moment of hydrofluorocarbons by density functional theory. Phys Chem Chem Phys 3:4200–4207CrossRef Benedito JCC, Guedes RC, Pai-Panandikerb RS, Castrob CAN (2001) Hydrogen bonding and the dipole moment of hydrofluorocarbons by density functional theory. Phys Chem Chem Phys 3:4200–4207CrossRef
Metadata
Title
Evaluation of Thermal Properties of Refrigerant Clathrates with Additives
Authors
Sayem Zafar
Ibrahim Dincer
Mohamed Gadalla
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-16709-1_17