Skip to main content
Top
Published in:

09-06-2024

Event-Triggered State Observer Design for a Class of Nonlinear Time-Delay Fractional-Order Systems

Author: Dinh Cong Huong

Published in: Circuits, Systems, and Signal Processing | Issue 9/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper studies the problem of designing event-triggered state observers for a class of nonlinear time-delay fractional-order systems. The time delay in the system is assumed to be unknown and non-differentiable but bounded within a closed interval. A novel discrete-time event-triggered fractional-order observer is first designed to provide an estimation vector for the state vector of the considered systems. It is ensured that the estimation vector robustly estimates the state vector of the nonlinear time-delay fractional-order systems. Then, a delay-dependent sufficient condition in terms of a convex optimization problem for the existence of the observer is established based on some lemmas relating to the Caputo derivative estimation of quadratic functions. Finally, three numerical examples demonstrate the validity of the proposed approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Show more products
Literature
1.
go back to reference G. Anaya, G.N. Antonio, R.M. Vega, E.G.H. Martinez, Lyapunov functions for a class of nonlinear systems using Caputo derivative. Commun. Nonlinear Sci. Numer. Simul. 43, 91–99 (2017)MathSciNetCrossRef G. Anaya, G.N. Antonio, R.M. Vega, E.G.H. Martinez, Lyapunov functions for a class of nonlinear systems using Caputo derivative. Commun. Nonlinear Sci. Numer. Simul. 43, 91–99 (2017)MathSciNetCrossRef
2.
go back to reference E.A. Boroujeni, H.R. Momeni, Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems. Signal Process. 92, 2365–2370 (2012)CrossRef E.A. Boroujeni, H.R. Momeni, Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems. Signal Process. 92, 2365–2370 (2012)CrossRef
3.
go back to reference S. Boyd, A. Ghaoui, E. Feron, et al. Linear Matrix Inequalities in Systems and Control Theory, in Studies in Applied Mathematics (vol. 15, SIAM, Philadelphia, 1994) S. Boyd, A. Ghaoui, E. Feron, et al. Linear Matrix Inequalities in Systems and Control Theory, in Studies in Applied Mathematics (vol. 15, SIAM, Philadelphia, 1994)
4.
go back to reference L. Chen, R. Wu, Y. He, L. Yin, Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties. Appl. Math. Comput. 257, 274–284 (2015)MathSciNetCrossRef L. Chen, R. Wu, Y. He, L. Yin, Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties. Appl. Math. Comput. 257, 274–284 (2015)MathSciNetCrossRef
5.
go back to reference B. Chen, J. Chen, Razumikhin-type stability theorems for functional fractional-order differential systems and applications. Appl. Math. Comput. 254, 63–69 (2015)MathSciNetCrossRef B. Chen, J. Chen, Razumikhin-type stability theorems for functional fractional-order differential systems and applications. Appl. Math. Comput. 254, 63–69 (2015)MathSciNetCrossRef
6.
go back to reference A. Coronel-Escamilla, J.F. Gomez-Aguilar, G.V. GuerreroRamirez, On the trajectory tracking control for an SCARA robot manipulator in a fractional model driven by induction motors with PSO tuning. Multibody Sys. Dyn. 43, 257–277 (2018)MathSciNetCrossRef A. Coronel-Escamilla, J.F. Gomez-Aguilar, G.V. GuerreroRamirez, On the trajectory tracking control for an SCARA robot manipulator in a fractional model driven by induction motors with PSO tuning. Multibody Sys. Dyn. 43, 257–277 (2018)MathSciNetCrossRef
7.
go back to reference D.C. Huong, H. Trinh, Method for computing state transformations of time-delay systems. IET Control Theory Appl. 9, 2405–2413 (2015)MathSciNetCrossRef D.C. Huong, H. Trinh, Method for computing state transformations of time-delay systems. IET Control Theory Appl. 9, 2405–2413 (2015)MathSciNetCrossRef
8.
go back to reference D.C. Huong, M.V. Thuan, Design of unknown input reduced-order observers for a class of nonlinear fractional-order time-delay systems. Int. J. Adapt. Control Signal Process. 32, 412–423 (2018)MathSciNetCrossRef D.C. Huong, M.V. Thuan, Design of unknown input reduced-order observers for a class of nonlinear fractional-order time-delay systems. Int. J. Adapt. Control Signal Process. 32, 412–423 (2018)MathSciNetCrossRef
9.
go back to reference T. Kaczorek, Reduced-order fractional descriptor observers for fractional descriptor continuous-time linear system. Bull. Pol. Acad. Sci. Tech. Sci. 62, 889–895 (2014) T. Kaczorek, Reduced-order fractional descriptor observers for fractional descriptor continuous-time linear system. Bull. Pol. Acad. Sci. Tech. Sci. 62, 889–895 (2014)
10.
go back to reference T. Kaczorek, Reduced-order perfect nonlinear observers of fractional descriptor discrete-time nonlinear systems. Int. J. Appl. Math. Comput. Sci. 27, 245–251 (2017)MathSciNetCrossRef T. Kaczorek, Reduced-order perfect nonlinear observers of fractional descriptor discrete-time nonlinear systems. Int. J. Appl. Math. Comput. Sci. 27, 245–251 (2017)MathSciNetCrossRef
11.
go back to reference A. Kilbas, H. Srivastava, J. Trujillo, Theory and Application of Fractional Differential Equations (Elsevier, New York, 2006) A. Kilbas, H. Srivastava, J. Trujillo, Theory and Application of Fractional Differential Equations (Elsevier, New York, 2006)
12.
go back to reference Y.H. Lan, L.L. Wang, L. Ding, Y. Zhou, Full-order and reduced-order observer design for a class of fractional-order nonlinear systems. Asian J. Control 18, 1467–1477 (2016)MathSciNetCrossRef Y.H. Lan, L.L. Wang, L. Ding, Y. Zhou, Full-order and reduced-order observer design for a class of fractional-order nonlinear systems. Asian J. Control 18, 1467–1477 (2016)MathSciNetCrossRef
13.
go back to reference J.A.T. Machado, A new fractional operator of variable order: application in the description of anomalous diffusion. Physica A Stat. Mech. Appl. 481, 276–283 (2017)MathSciNetCrossRef J.A.T. Machado, A new fractional operator of variable order: application in the description of anomalous diffusion. Physica A Stat. Mech. Appl. 481, 276–283 (2017)MathSciNetCrossRef
14.
go back to reference P. Mani, R. Rajan, S. Lakshmanan, Y.H. Joo, Adaptive control for fractional order induced chaotic fuzzy cellular neural networks and its application to image encryption. Inform. Sci. 491, 74–89 (2019)MathSciNetCrossRef P. Mani, R. Rajan, S. Lakshmanan, Y.H. Joo, Adaptive control for fractional order induced chaotic fuzzy cellular neural networks and its application to image encryption. Inform. Sci. 491, 74–89 (2019)MathSciNetCrossRef
15.
go back to reference S. Marzougui, S. Bedoui, A. Atitallah, K. Abderrahim, Parameter and state estimation of nonlinear fractional-order model using Luenberger observer. Circuits Syst. Signal Process. 41, 5366–5391 (2022)CrossRef S. Marzougui, S. Bedoui, A. Atitallah, K. Abderrahim, Parameter and state estimation of nonlinear fractional-order model using Luenberger observer. Circuits Syst. Signal Process. 41, 5366–5391 (2022)CrossRef
16.
go back to reference T. N’doye, T.M. Laleg-Kirati, M. Darouach, H. Voos, \(H_{\infty }\) Adaptive observer for nonlinear fractional-order systems. Int. J. Adapt. Control Signal Process. 31, 314–331 (2017)MathSciNetCrossRef T. N’doye, T.M. Laleg-Kirati, M. Darouach, H. Voos, \(H_{\infty }\) Adaptive observer for nonlinear fractional-order systems. Int. J. Adapt. Control Signal Process. 31, 314–331 (2017)MathSciNetCrossRef
17.
18.
go back to reference M. Pourgholi, E.A. Boroujeni, An iterative LMI-based reduced-order observer design for fractional-order chaos synchronization. Circuits Syst. Signal Process. 35, 1855–1870 (2016)MathSciNetCrossRef M. Pourgholi, E.A. Boroujeni, An iterative LMI-based reduced-order observer design for fractional-order chaos synchronization. Circuits Syst. Signal Process. 35, 1855–1870 (2016)MathSciNetCrossRef
19.
go back to reference C. Rajivganthi, F.A. Rihan, S. Lakshmanan, P. Muthukumar, Finite-time stability analysis for fractional-order Cohen–Grossberg BAM neural networks with time delays. Neural Comput. Appl. 29, 1309–1320 (2018)CrossRef C. Rajivganthi, F.A. Rihan, S. Lakshmanan, P. Muthukumar, Finite-time stability analysis for fractional-order Cohen–Grossberg BAM neural networks with time delays. Neural Comput. Appl. 29, 1309–1320 (2018)CrossRef
20.
go back to reference X. Shao, M. Lyu, J. Zhang, Nonfragile estimator design for fractional-order neural networks under event-triggered mechanism. Disc. Dyn. Nat. Soc. Article ID 6695353 (2021) X. Shao, M. Lyu, J. Zhang, Nonfragile estimator design for fractional-order neural networks under event-triggered mechanism. Disc. Dyn. Nat. Soc. Article ID 6695353 (2021)
21.
go back to reference H. Trinh, D.C. Huong, S. Nahavandi, Observer design for positive fractional-order interconnected time-delay systems. Trans. Inst. Meas. Control. 41, 378–3911 (2019)CrossRef H. Trinh, D.C. Huong, S. Nahavandi, Observer design for positive fractional-order interconnected time-delay systems. Trans. Inst. Meas. Control. 41, 378–3911 (2019)CrossRef
22.
go back to reference H.T. Tuan, H. Trinh, Stability of fractional-order nonlinear systems by Lyapunov direct method. IET Control Theory Appl. 12, 2417–2422 (2018)MathSciNetCrossRef H.T. Tuan, H. Trinh, Stability of fractional-order nonlinear systems by Lyapunov direct method. IET Control Theory Appl. 12, 2417–2422 (2018)MathSciNetCrossRef
23.
go back to reference G. Vainikko, Which functions are fractionally differentiable. J. Anal. Appl. 35, 465–487 (2016)MathSciNet G. Vainikko, Which functions are fractionally differentiable. J. Anal. Appl. 35, 465–487 (2016)MathSciNet
24.
go back to reference Q. Wang, J. Zhang, D. Ding, D. Qi, Adaptive Mittag–Leffler stabilization of a class of fractional order uncertain nonlinear systems. Asian J. Control 18, 2343–2351 (2016)MathSciNetCrossRef Q. Wang, J. Zhang, D. Ding, D. Qi, Adaptive Mittag–Leffler stabilization of a class of fractional order uncertain nonlinear systems. Asian J. Control 18, 2343–2351 (2016)MathSciNetCrossRef
25.
go back to reference A.L. Wu, Z.G. Zeng, Boundedness, Mittag–Leffler stability and asymptotical \(\omega \)-periodicity of fractional-order fuzzy neural networks. Neural net. 74, 73–84 (2016)CrossRef A.L. Wu, Z.G. Zeng, Boundedness, Mittag–Leffler stability and asymptotical \(\omega \)-periodicity of fractional-order fuzzy neural networks. Neural net. 74, 73–84 (2016)CrossRef
26.
go back to reference A.L. Wu, Z.G. Zeng, X.G. Song, Global Mittag–Leffler stabilization of fractional-order bidirectional associative memory neural networks. Neural net. 177, 489–496 (2016) A.L. Wu, Z.G. Zeng, X.G. Song, Global Mittag–Leffler stabilization of fractional-order bidirectional associative memory neural networks. Neural net. 177, 489–496 (2016)
27.
go back to reference B. Xu, B. Li, Event-triggered state estimation for fractional-order neural networks. Mathematics 10, 325 (2022)CrossRef B. Xu, B. Li, Event-triggered state estimation for fractional-order neural networks. Mathematics 10, 325 (2022)CrossRef
28.
go back to reference X.J. Yang, Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems. Thermal Sci. 21, 1161–1171 (2017)CrossRef X.J. Yang, Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems. Thermal Sci. 21, 1161–1171 (2017)CrossRef
29.
go back to reference X.J. Yang, H.M. Srivastava, J.A.T. Machado, New fractional derivative without singular kernel: application to the modelling of the steady heat flow. Thermal Sci. 20, 753–756 (2016)CrossRef X.J. Yang, H.M. Srivastava, J.A.T. Machado, New fractional derivative without singular kernel: application to the modelling of the steady heat flow. Thermal Sci. 20, 753–756 (2016)CrossRef
Metadata
Title
Event-Triggered State Observer Design for a Class of Nonlinear Time-Delay Fractional-Order Systems
Author
Dinh Cong Huong
Publication date
09-06-2024
Publisher
Springer US
Published in
Circuits, Systems, and Signal Processing / Issue 9/2024
Print ISSN: 0278-081X
Electronic ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02745-8