Skip to main content
Top
Published in:

15-04-2023

Evident α/γ Interface Sliding in Fully Lamellar TiAl Alloy During Hot Deformation: Metallurgical Observation and Mesoscopic Modelling

Authors: Liang Cheng, Fengming Qiang, Bin Zhu, Jinshan Li

Published in: Metals and Materials International | Issue 11/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Prominent interface sliding was noted in a fully lamellar Ti–43.5Al–8Nb–0.2W–0.2B alloy deformed in (α + γ) phase region with low strain rate, which is evidenced by the drastic α/γ lamellar offsets at the kink boundaries. Due to the effective accommodation of interface sliding, there were only a few substructures produced at the kink bands in spite of the high strain localization. By using the transmission electron microscopy, the interface sliding was demonstrated to be caused by the glide of pre-existing interfacial dislocations. Based on the metallurgical observations and kinetics analysis, two mesoscopic models for interface sliding were established corresponding to two alternative rate-controlling steps, i.e., intra-lamellar dislocation climb-controlled or interfacial dislocation glide-controlled. Both of them predicted a Newtonian viscous shear behavior but the latter was manifested to be more plausible to account for the interface sliding kinetics. In addition, the reliability of the model was discussed in detail, as well as the role of interface sliding during hot deformation. The developed mesoscopic model can be readily implemented into the crystal plasticity finite element method for a better understanding of the synergistic effects of the individual processes on the high temperature plastic flow of lamellar colonies in TiAl alloys.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F. Appel, J.D.H. Paul, M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology (Wiley-VCH, Weinheim, 2011) F. Appel, J.D.H. Paul, M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology (Wiley-VCH, Weinheim, 2011)
2.
go back to reference S. Djanarthany, J.-C. Viala, J. Bouix, An overview of monolithic titanium aluminides based on Ti3Al and TiAl. Mater. Chem. Phys. 72, 301–319 (2001)CrossRef S. Djanarthany, J.-C. Viala, J. Bouix, An overview of monolithic titanium aluminides based on Ti3Al and TiAl. Mater. Chem. Phys. 72, 301–319 (2001)CrossRef
3.
go back to reference F. Appel, R. Wagner, Microstructure and deformation of two-phase y-titanium aluminides. Mater. Sci. Eng. R 22, 187–268 (1998)CrossRef F. Appel, R. Wagner, Microstructure and deformation of two-phase y-titanium aluminides. Mater. Sci. Eng. R 22, 187–268 (1998)CrossRef
4.
go back to reference H. Clemens, H. Kestler, Processing and applications of intermetallic γ-TiAl-based alloys. Adv. Eng. Mater. 2, 551–570 (2000)CrossRef H. Clemens, H. Kestler, Processing and applications of intermetallic γ-TiAl-based alloys. Adv. Eng. Mater. 2, 551–570 (2000)CrossRef
5.
go back to reference G.J. Mahon, J.M. Howe, Transmission electron microscopy investigation of interfaces in a two-phase TiAl alloy. Metall. Trans. A 21, 1655–1662 (1990)CrossRef G.J. Mahon, J.M. Howe, Transmission electron microscopy investigation of interfaces in a two-phase TiAl alloy. Metall. Trans. A 21, 1655–1662 (1990)CrossRef
6.
go back to reference P.M. Hazzledine, B.K. Kad, Yield and fracture of lamellar γα2 TiAl alloys. Mater. Sci. Eng. A 192–193, 340–346 (1995)CrossRef P.M. Hazzledine, B.K. Kad, Yield and fracture of lamellar γα2 TiAl alloys. Mater. Sci. Eng. A 192–193, 340–346 (1995)CrossRef
7.
go back to reference L. Zhao, K. Tangri, TEM investigation on the interfacial boundaries in as-cast Ti3Al+TiAl alloy. Acta Metall. Mater. 39, 2209–2224 (1991)CrossRef L. Zhao, K. Tangri, TEM investigation on the interfacial boundaries in as-cast Ti3Al+TiAl alloy. Acta Metall. Mater. 39, 2209–2224 (1991)CrossRef
8.
go back to reference H. Inui, A. Nakamura, M.H. Oh, M. Yamaguchi, High-resolution electron microscope study of lamellar boundaries in Ti-rich TiA1 polysynthetically twinned crystals. Ultramicroscopy 39, 268–278 (1991)CrossRef H. Inui, A. Nakamura, M.H. Oh, M. Yamaguchi, High-resolution electron microscope study of lamellar boundaries in Ti-rich TiA1 polysynthetically twinned crystals. Ultramicroscopy 39, 268–278 (1991)CrossRef
9.
go back to reference P. Shang, T.T. Cheng, M. Aindow, High-resolution electron microscopy of steps on misfitting lamellar γ-α2 interfaces in a Ti-44at.%Al-8at.%Nb alloy. Philos. Mag. Lett. 80, 1–10 (2000)CrossRef P. Shang, T.T. Cheng, M. Aindow, High-resolution electron microscopy of steps on misfitting lamellar γ-α2 interfaces in a Ti-44at.%Al-8at.%Nb alloy. Philos. Mag. Lett. 80, 1–10 (2000)CrossRef
10.
go back to reference F. Appel, P.A. Beaven, R. Wagner, Deformation processes related to interfacial boundaries in two-phase γ-titanium aluminides. Acta Metall Mater. 41, 1721–1732 (1993)CrossRef F. Appel, P.A. Beaven, R. Wagner, Deformation processes related to interfacial boundaries in two-phase γ-titanium aluminides. Acta Metall Mater. 41, 1721–1732 (1993)CrossRef
11.
go back to reference F. Appel, Diffusion assisted dislocation climb in intermetallic gamma TiAl. Mater. Sci. Eng. A 317, 115–127 (2001)CrossRef F. Appel, Diffusion assisted dislocation climb in intermetallic gamma TiAl. Mater. Sci. Eng. A 317, 115–127 (2001)CrossRef
12.
go back to reference S. Rao, C. Woodward, P. Hazzledine, Defect Interface Interactions, in Materials Research Society Proceedings, ed. by E.P. Kvam, A.H. King, M.J. Mills, T.D. Sands, V. Vitek (MRS, Pittsburgh, 1994), p.285 S. Rao, C. Woodward, P. Hazzledine, Defect Interface Interactions, in Materials Research Society Proceedings, ed. by E.P. Kvam, A.H. King, M.J. Mills, T.D. Sands, V. Vitek (MRS, Pittsburgh, 1994), p.285
13.
go back to reference L. Lu, R. Siegl, A. Girshick, D.P. Pope, V. Vitek, Energy and structure of interfaces in polysynthetically twinned TiAl. Scr. Mater. 34, 971–976 (1996)CrossRef L. Lu, R. Siegl, A. Girshick, D.P. Pope, V. Vitek, Energy and structure of interfaces in polysynthetically twinned TiAl. Scr. Mater. 34, 971–976 (1996)CrossRef
14.
go back to reference C.L. Fu, J. Zou, M.H. Yoo, Elastic constants and planar fault energies of Ti3Al, and interfacial energies at the Ti3AlTiAl interface by first-principles calculations. Scr. Metall. Mater. 33, 885–891 (1995)CrossRef C.L. Fu, J. Zou, M.H. Yoo, Elastic constants and planar fault energies of Ti3Al, and interfacial energies at the Ti3AlTiAl interface by first-principles calculations. Scr. Metall. Mater. 33, 885–891 (1995)CrossRef
15.
go back to reference L.M. Hsiung, T.G. Nieh, Creep deformation of fully lamellar TiAl controlled by the viscous glide of interfacial dislocations. Intermetallics 7, 821–827 (1999)CrossRef L.M. Hsiung, T.G. Nieh, Creep deformation of fully lamellar TiAl controlled by the viscous glide of interfacial dislocations. Intermetallics 7, 821–827 (1999)CrossRef
16.
go back to reference L.M. Hsiung, T.G. Nieh, B.W. Choi, J. Wadsworth, Interfacial dislocations and deformation twinning in fully lamellar TiAl. Mater. Sci. Eng. A 329–331, 637–643 (2002)CrossRef L.M. Hsiung, T.G. Nieh, B.W. Choi, J. Wadsworth, Interfacial dislocations and deformation twinning in fully lamellar TiAl. Mater. Sci. Eng. A 329–331, 637–643 (2002)CrossRef
17.
go back to reference L.M. Hsiung, A.J. Schwartz, T.G. Nieh, In situ TEM observations of interface sliding and migration in a refined lamellar TiAl alloy. Intermetallics 12, 727–732 (2004)CrossRef L.M. Hsiung, A.J. Schwartz, T.G. Nieh, In situ TEM observations of interface sliding and migration in a refined lamellar TiAl alloy. Intermetallics 12, 727–732 (2004)CrossRef
18.
go back to reference F. Appel, H. Clemens, F.D. Fischer, Modeling concepts for intermetallic titanium aluminides. Prog. Mater. Sci. 81, 55–124 (2016)CrossRef F. Appel, H. Clemens, F.D. Fischer, Modeling concepts for intermetallic titanium aluminides. Prog. Mater. Sci. 81, 55–124 (2016)CrossRef
19.
go back to reference W.T. Marketz, F.D. Fischer, H. Clemens, Deformation mechanisms in TiAl intermetallics: experiments and modeling. Int. J. Plast. 19, 281–321 (2003)CrossRef W.T. Marketz, F.D. Fischer, H. Clemens, Deformation mechanisms in TiAl intermetallics: experiments and modeling. Int. J. Plast. 19, 281–321 (2003)CrossRef
20.
go back to reference L. Chen, T.E.J. Edward, F.D. Gioacchinoc, W.J. Clegg, F.P.E. Dunne, M.S. Pham, Crystal plasticity analysis of deformation anisotropy of lamellar TiAl alloy: 3D microstructure-based modelling and in-situ micro-compression. Int. J. Plasticity 119, 344–360 (2019)CrossRef L. Chen, T.E.J. Edward, F.D. Gioacchinoc, W.J. Clegg, F.P.E. Dunne, M.S. Pham, Crystal plasticity analysis of deformation anisotropy of lamellar TiAl alloy: 3D microstructure-based modelling and in-situ micro-compression. Int. J. Plasticity 119, 344–360 (2019)CrossRef
21.
go back to reference B.Q. Yin, X.Y. Xue, B. Tang, W.Y. Wang, H.C. Kou, J.S. Li, Experiments and crystal plasticity simulations for the deformation behavior of nanoindentation: application to the α2 phase of TiAl alloy. Mater. Sci. Eng. A 831, 142283 (2022)CrossRef B.Q. Yin, X.Y. Xue, B. Tang, W.Y. Wang, H.C. Kou, J.S. Li, Experiments and crystal plasticity simulations for the deformation behavior of nanoindentation: application to the α2 phase of TiAl alloy. Mater. Sci. Eng. A 831, 142283 (2022)CrossRef
22.
go back to reference M.U. Ilyas, M.R. Kabir, Modelling high temperature deformation of lamellar TiAl crystal using strain-rate enhanced crystal plasticity. Mater. Sci. Eng. A 788, 139524 (2020)CrossRef M.U. Ilyas, M.R. Kabir, Modelling high temperature deformation of lamellar TiAl crystal using strain-rate enhanced crystal plasticity. Mater. Sci. Eng. A 788, 139524 (2020)CrossRef
23.
go back to reference M.U. Ilyas, M.R. Kabir, Creep behaviour of two-phase lamellar TiAl: Crystal plasticity modelling and analysis. Intermetallics 132, 107129 (2021)CrossRef M.U. Ilyas, M.R. Kabir, Creep behaviour of two-phase lamellar TiAl: Crystal plasticity modelling and analysis. Intermetallics 132, 107129 (2021)CrossRef
24.
go back to reference L. Cheng, J.S. Li, X.Y. Xue, B. Tang, H.C. Kou, E. Bouzy, Superplastic deformation mechanisms of high Nb containing TiAl alloy with (α2+γ) microstructure. Intermetallics 75, 62–71 (2016)CrossRef L. Cheng, J.S. Li, X.Y. Xue, B. Tang, H.C. Kou, E. Bouzy, Superplastic deformation mechanisms of high Nb containing TiAl alloy with (α2+γ) microstructure. Intermetallics 75, 62–71 (2016)CrossRef
25.
go back to reference L. Cheng, F.M. Qiang, J.S. Li, E. Bouzy, Quantitative evaluation of the lamellar kinking&rotation on the flow softening of γ-TiAl-based alloys at elevated temperatures. Mater. Lett. 290, 129458 (2021)CrossRef L. Cheng, F.M. Qiang, J.S. Li, E. Bouzy, Quantitative evaluation of the lamellar kinking&rotation on the flow softening of γ-TiAl-based alloys at elevated temperatures. Mater. Lett. 290, 129458 (2021)CrossRef
26.
go back to reference V.T. Witusiewicz, A.A. Bondar, U. Hecht, T.Y. Velikanova, The Al–B–Nb–Ti system IV: experimental study and thermodynamic re-evaluation of the binary Al–Nb and ternary Al–Nb–Ti systems. J. Alloy. Compd. 472, 133–161 (2009)CrossRef V.T. Witusiewicz, A.A. Bondar, U. Hecht, T.Y. Velikanova, The Al–B–Nb–Ti system IV: experimental study and thermodynamic re-evaluation of the binary Al–Nb and ternary Al–Nb–Ti systems. J. Alloy. Compd. 472, 133–161 (2009)CrossRef
27.
go back to reference A. Morawiec, J.J. Fundenberger, E. Bouzy, J.S. Lecomte, EP: a program for determination of crystallite orientations from TEM Kikuchi and CBED diffraction patterns. J. Appl. Crystallogr. 35, 287–287 (2002)CrossRef A. Morawiec, J.J. Fundenberger, E. Bouzy, J.S. Lecomte, EP: a program for determination of crystallite orientations from TEM Kikuchi and CBED diffraction patterns. J. Appl. Crystallogr. 35, 287–287 (2002)CrossRef
28.
go back to reference T.A. Parthasarathy, P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, Phenomenological observations of lamellar orientation effects on the creep behavior of Ti–48at%Al PST crystals. Acta Mater. 48, 541–551 (2000)CrossRef T.A. Parthasarathy, P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, Phenomenological observations of lamellar orientation effects on the creep behavior of Ti–48at%Al PST crystals. Acta Mater. 48, 541–551 (2000)CrossRef
29.
go back to reference K. Kishida, H. Inui, M. Yamaguchi, Deformation of PST crystals of a TiAl/Ti3Al two-phase alloy at 1000 °C. Intermetallics 7, 1131–1139 (1999)CrossRef K. Kishida, H. Inui, M. Yamaguchi, Deformation of PST crystals of a TiAl/Ti3Al two-phase alloy at 1000 °C. Intermetallics 7, 1131–1139 (1999)CrossRef
30.
go back to reference R.M. Imayev, V.M. Imayev, M. Oehring, F. Appel, Microstructural evolution during hot working of Ti aluminide alloys: Influence of phase constitution and initial casting texture. Metall. Mater. Trans. A 36, 859–867 (2005)CrossRef R.M. Imayev, V.M. Imayev, M. Oehring, F. Appel, Microstructural evolution during hot working of Ti aluminide alloys: Influence of phase constitution and initial casting texture. Metall. Mater. Trans. A 36, 859–867 (2005)CrossRef
31.
go back to reference U. Frobel, A. Stark, Microstructural evolution in gamma titanium aluminides during severe hot-working. Metall. Mater. Trans. A 46, 439–455 (2015)CrossRef U. Frobel, A. Stark, Microstructural evolution in gamma titanium aluminides during severe hot-working. Metall. Mater. Trans. A 46, 439–455 (2015)CrossRef
32.
go back to reference Th. Schaden, F.D. Fischer, H. Clemens, F. Appel, A. Bartels, Numerical modelling of kinking in lamellar γ-TiAl based alloys. Adv. Eng. Mater. 8, 1109–1113 (2006)CrossRef Th. Schaden, F.D. Fischer, H. Clemens, F. Appel, A. Bartels, Numerical modelling of kinking in lamellar γ-TiAl based alloys. Adv. Eng. Mater. 8, 1109–1113 (2006)CrossRef
33.
go back to reference T.G. Nieh, J. Wadsworth, Microstructural characteristics and deformation properties in superplastic intermetallics. Mater. Sci. Eng. A 239–240, 88–96 (1997)CrossRef T.G. Nieh, J. Wadsworth, Microstructural characteristics and deformation properties in superplastic intermetallics. Mater. Sci. Eng. A 239–240, 88–96 (1997)CrossRef
34.
go back to reference L. Cheng, J.S. Li, X.Y. Xue, B. Tang, H.C. Kou, O. Perroud, E. Bouzy, Effect of β/B2 phase on cavitation behavior during superplastic deformation of TiAl alloys. J. Alloy. Compd. 693, 749–759 (2017)CrossRef L. Cheng, J.S. Li, X.Y. Xue, B. Tang, H.C. Kou, O. Perroud, E. Bouzy, Effect of β/B2 phase on cavitation behavior during superplastic deformation of TiAl alloys. J. Alloy. Compd. 693, 749–759 (2017)CrossRef
35.
go back to reference F. Appel, Phase Transformations and Recrystallization Processes During Synthesis, Processing and Service of TiAl Alloys, in Recrystallization, ed. by K. Sztwiertnia (IntechOpen, London, 2012). https://doi.org/10.5772/34972 F. Appel, Phase Transformations and Recrystallization Processes During Synthesis, Processing and Service of TiAl Alloys, in Recrystallization, ed. by K. Sztwiertnia (IntechOpen, London, 2012). https://​doi.​org/​10.​5772/​34972
36.
go back to reference H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982) H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982)
37.
go back to reference M.E. Kassner, Fundamentals of Creep in Metals and Alloys, 2nd edn. (Elsevier, Amsterdam, 2009) M.E. Kassner, Fundamentals of Creep in Metals and Alloys, 2nd edn. (Elsevier, Amsterdam, 2009)
38.
go back to reference T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics (Cambridge University Press, Cambridge, 2005) T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics (Cambridge University Press, Cambridge, 2005)
39.
go back to reference O.D. Sherby, J. Wadsworth, Superplasticity–recent advances and future directions. Prog. Mater. Sci. 33, 169–221 (1989)CrossRef O.D. Sherby, J. Wadsworth, Superplasticity–recent advances and future directions. Prog. Mater. Sci. 33, 169–221 (1989)CrossRef
40.
go back to reference H. Masuda, E. Sato, Diffusional and dislocation accommodation mechanisms in superplastic materials. Acta Mater. 197, 235–252 (2020)CrossRef H. Masuda, E. Sato, Diffusional and dislocation accommodation mechanisms in superplastic materials. Acta Mater. 197, 235–252 (2020)CrossRef
41.
go back to reference H. Fukuyo, H.C. Tsai, T. Oyama, O.D. Sherby, Superplasticity and newtonian-viscous flow in fine-grained Class I solid solution alloys. ISIJ Int. 31, 76–85 (1991)CrossRef H. Fukuyo, H.C. Tsai, T. Oyama, O.D. Sherby, Superplasticity and newtonian-viscous flow in fine-grained Class I solid solution alloys. ISIJ Int. 31, 76–85 (1991)CrossRef
42.
go back to reference A. Ball, M.M. Hutchison, Superplasticity in the aluminium-zinc eutectoid. Metal Sci. J. 3, 1–7 (1969)CrossRef A. Ball, M.M. Hutchison, Superplasticity in the aluminium-zinc eutectoid. Metal Sci. J. 3, 1–7 (1969)CrossRef
43.
go back to reference H.W. Hayden, S. Floreen, P.D. Goodell, The deformation mechanisms of superplasticity. Metall. Trans. 3, 833–842 (1972)CrossRef H.W. Hayden, S. Floreen, P.D. Goodell, The deformation mechanisms of superplasticity. Metall. Trans. 3, 833–842 (1972)CrossRef
44.
go back to reference T.G. Langdon, Grain boundary sliding as a deformation mechanism during creep. Phil. Mag. 22, 689–700 (1970)CrossRef T.G. Langdon, Grain boundary sliding as a deformation mechanism during creep. Phil. Mag. 22, 689–700 (1970)CrossRef
45.
go back to reference J. Weertman, Theory of steady-state creep based on dislocation climb. J. Appl. Phys. 26, 1213–1217 (1955)CrossRef J. Weertman, Theory of steady-state creep based on dislocation climb. J. Appl. Phys. 26, 1213–1217 (1955)CrossRef
46.
go back to reference J.S. Koehler, The production of large tensile stresses by dislocations. Phys. Rev. 85, 480–481 (1952)CrossRef J.S. Koehler, The production of large tensile stresses by dislocations. Phys. Rev. 85, 480–481 (1952)CrossRef
47.
go back to reference R.S. Gates, The role of grain boundary dislocations in grain boundary sliding. Acta Metall. 21, 855–864 (1973)CrossRef R.S. Gates, The role of grain boundary dislocations in grain boundary sliding. Acta Metall. 21, 855–864 (1973)CrossRef
48.
go back to reference E. Arzt, M.F. Ashby, R.A. Verrall, Interface controlled diffusional creep. Acta Metall. 31, 1977–1989 (1983)CrossRef E. Arzt, M.F. Ashby, R.A. Verrall, Interface controlled diffusional creep. Acta Metall. 31, 1977–1989 (1983)CrossRef
49.
go back to reference L. Cheng, J.S. Li, X.Y. Xue, B. Tang, H.C. Kou, E. Bouzy, General features of high temperature deformation kinetics for γ-TiAl-based alloys with DP/NG microstructures: Part I: a survey of mechanical data and development of unified rate-equations. Mater. Sci. Eng. A 678, 389–401 (2016)CrossRef L. Cheng, J.S. Li, X.Y. Xue, B. Tang, H.C. Kou, E. Bouzy, General features of high temperature deformation kinetics for γ-TiAl-based alloys with DP/NG microstructures: Part I: a survey of mechanical data and development of unified rate-equations. Mater. Sci. Eng. A 678, 389–401 (2016)CrossRef
50.
go back to reference S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev, S.L. Semiatin, Microstructure evolution during warm working of Ti–6Al–4V with a colony-α microstructure. Acta Mater. 57, 2470–2481 (2009)CrossRef S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev, S.L. Semiatin, Microstructure evolution during warm working of Ti–6Al–4V with a colony-α microstructure. Acta Mater. 57, 2470–2481 (2009)CrossRef
51.
go back to reference U.F. Kocks, G.R. Canova, How many slip systems, and which?, in Deformation of Polycrystals Mechanisms and Microstructures. ed. by N. Hansen, A. Horsewell, T. Leffers, H. Lilholt (Riso National Laboratory, Roskilde, 1981), p.35 U.F. Kocks, G.R. Canova, How many slip systems, and which?, in Deformation of Polycrystals Mechanisms and Microstructures. ed. by N. Hansen, A. Horsewell, T. Leffers, H. Lilholt (Riso National Laboratory, Roskilde, 1981), p.35
52.
go back to reference S.V. Divinski, F. Hisker, A. Bartels, C. Herzig, Interphase boundary diffusion of 44Ti in two-phase TiAl with lamellar α2/γ structure. Scr. Mater. 45, 161–167 (2001)CrossRef S.V. Divinski, F. Hisker, A. Bartels, C. Herzig, Interphase boundary diffusion of 44Ti in two-phase TiAl with lamellar α2/γ structure. Scr. Mater. 45, 161–167 (2001)CrossRef
53.
go back to reference H. Conrad, J. Narayan, On the grain size softening in nanocrystalline materials. Scr. Mater. 42, 1025–1030 (2000)CrossRef H. Conrad, J. Narayan, On the grain size softening in nanocrystalline materials. Scr. Mater. 42, 1025–1030 (2000)CrossRef
54.
go back to reference Z.H. Li, G.W. Zhou, D.Y. Li, H.M. Wang, W.Q. Tang, Y.H. Peng, H.S. Zurob, P.D. Wu, Crystal plasticity based modeling of grain boundary sliding in magnesium alloy AZ31B sheet. Trans. Nonferrous Met. Soc. China 31, 138–155 (2021)CrossRef Z.H. Li, G.W. Zhou, D.Y. Li, H.M. Wang, W.Q. Tang, Y.H. Peng, H.S. Zurob, P.D. Wu, Crystal plasticity based modeling of grain boundary sliding in magnesium alloy AZ31B sheet. Trans. Nonferrous Met. Soc. China 31, 138–155 (2021)CrossRef
55.
go back to reference B. Zhu, R.J. Asaro, P. Krysl, R. Bailey, Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals. Acta Mater. 53, 4825–4838 (2005)CrossRef B. Zhu, R.J. Asaro, P. Krysl, R. Bailey, Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals. Acta Mater. 53, 4825–4838 (2005)CrossRef
56.
go back to reference R.E. Schafrik, Dynamic elastic moduli of the titanium aluminides. Metall. Trans. A 8, 1003–1006 (1977)CrossRef R.E. Schafrik, Dynamic elastic moduli of the titanium aluminides. Metall. Trans. A 8, 1003–1006 (1977)CrossRef
57.
go back to reference Y. Mishin, C. Herzig, Diffusion in the Ti–Al system. Acta Mater. 48, 589–623 (2000)CrossRef Y. Mishin, C. Herzig, Diffusion in the Ti–Al system. Acta Mater. 48, 589–623 (2000)CrossRef
58.
go back to reference R.L. Coble, A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679–1682 (1963)CrossRef R.L. Coble, A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679–1682 (1963)CrossRef
Metadata
Title
Evident α/γ Interface Sliding in Fully Lamellar TiAl Alloy During Hot Deformation: Metallurgical Observation and Mesoscopic Modelling
Authors
Liang Cheng
Fengming Qiang
Bin Zhu
Jinshan Li
Publication date
15-04-2023
Publisher
The Korean Institute of Metals and Materials
Published in
Metals and Materials International / Issue 11/2023
Print ISSN: 1598-9623
Electronic ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-023-01440-8

Other articles of this Issue 11/2023

Metals and Materials International 11/2023 Go to the issue

Premium Partners