Skip to main content
Top

2018 | OriginalPaper | Chapter

Evolution of an Intrathermocline Lens over the Lofoten Basin

Authors : Boris N. Filyushkin, Mikhail A. Sokolovskiy, Konstantin V. Lebedev

Published in: The Ocean in Motion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Lofoten Basin of the Norwegian Sea is the main reservoir of heat in the Polar seas; it stands out as an area of high mesoscale activity and the existence of a quasi-permanent anticyclonic vortex. The observations of Argo floats over the period of 2005–2014 (17,600 profiles measured by 125 recorders) were used in the area of 55–80° N and 30–15° W, covering the Lofoten Basin. The Argo-based Model for Investigation of the Global Ocean (AMIGO) was used. The method makes it possible to obtain annual mean velocity fields and thermohaline characteristics up to a depth of 1500 m in 1° squares. One large-scale anticyclonic vortex covering the deepest part of the Lofoten area was observed in the depth column from 30 to 1500 m with velocity values increasing from 0–2 cm/s in the vortex center to 7–12 cm/s at its periphery. A local anticyclonic vortex (a lens of warm and saline waters) with a radius of about 35 km at depths of 250–700 m with an average long-term position of the center at 69.5° N and 3.5° E is also distinguished along the vertical distributions of thermohaline characteristics. In this contribution, we simulate the evolution of this lens, represented as an anticyclonic vortex patch located in the middle layer, within the framework of a three-layer quasi-geostrophic model using the Contour Dynamics Method. Calculations showed that the model can adequately reproduce the nature of the lens drift under the influences of various types of ocean currents and bottom topography. Comparison of the model results with the in situ observations of the vortex trajectories gives satisfactory results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alekseev, G. V., Bagryantsev, M. V., Bogorodskiy, P. V., Vasin, V. V., & Shirokov, P. E. (1991). Structure and circulation of water in the area of anticyclonic eddy in the northeastern Norwegian Sea. Problems of the Arctic and Antarctic, 65, 14–23 (in Russian). Alekseev, G. V., Bagryantsev, M. V., Bogorodskiy, P. V., Vasin, V. V., & Shirokov, P. E. (1991). Structure and circulation of water in the area of anticyclonic eddy in the northeastern Norwegian Sea. Problems of the Arctic and Antarctic, 65, 14–23 (in Russian).
2.
go back to reference Alekseev, G. V., Nikolaev, Yu V, Romanov, A. A., Romantsev, V. A., & Sarukhanyan, E. I. (1986). Results of natural investigations in the Norwegian energy active zone. Itogi Nauki i Tekhniki, Atmosphere, Ocean, Space Program RAZREZY, 7, 46–72 (in Russian). Alekseev, G. V., Nikolaev, Yu V, Romanov, A. A., Romantsev, V. A., & Sarukhanyan, E. I. (1986). Results of natural investigations in the Norwegian energy active zone. Itogi Nauki i Tekhniki, Atmosphere, Ocean, Space Program RAZREZY, 7, 46–72 (in Russian).
4.
go back to reference Bashmachnikov, I. L., Sokolovskiy, M. A., Belonenko, T. V., Volkov, D. L., Isachsen, P. E., & Carton, X. (2017). On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea. Deep-Sea Research Part I (in press). Bashmachnikov, I. L., Sokolovskiy, M. A., Belonenko, T. V., Volkov, D. L., Isachsen, P. E., & Carton, X. (2017). On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea. Deep-Sea Research Part I (in press).
5.
go back to reference Gascard, J.-C., & Mork, K. A. (2008). Climatic importance of large-scale and mesoscale circulation in the Lofoten Basin deduced from Lagrangian observations. In R. R. Dickson, J. Meincke, & P. Rhines (Eds.), Chapter 6: Arctic-Subarctic Ocean fluxes. Defining the role of the Northern Seas in climate (pp. 131–143). Dordrecht: Springer. Gascard, J.-C., & Mork, K. A. (2008). Climatic importance of large-scale and mesoscale circulation in the Lofoten Basin deduced from Lagrangian observations. In R. R. Dickson, J. Meincke, & P. Rhines (Eds.), Chapter 6: Arctic-Subarctic Ocean fluxes. Defining the role of the Northern Seas in climate (pp. 131–143). Dordrecht: Springer.
6.
go back to reference Ivanov, V. V., & Korablev, A. A. (1995). Formation and regeneration of the pycnocline lens in the Norwegian Sea. Russian Meteorology and Hydrology, 9, 62–69. Ivanov, V. V., & Korablev, A. A. (1995). Formation and regeneration of the pycnocline lens in the Norwegian Sea. Russian Meteorology and Hydrology, 9, 62–69.
7.
go back to reference Ivanov, V. V., & Korablev, A. A. (1995). Interpycnocline lens dynamics in the Norwegian Sea. Russian Meteorology and Hydrology, 10, 32–37. Ivanov, V. V., & Korablev, A. A. (1995). Interpycnocline lens dynamics in the Norwegian Sea. Russian Meteorology and Hydrology, 10, 32–37.
8.
go back to reference Köhl, A. (2007). Generation and stability of a quasi-permanent vortex in the Lofoten Basin. Journal of Physical Oceanography, 37, 2637–2651.CrossRef Köhl, A. (2007). Generation and stability of a quasi-permanent vortex in the Lofoten Basin. Journal of Physical Oceanography, 37, 2637–2651.CrossRef
9.
go back to reference Kozlov, V. F. (1984). Models of the topographic vortices in ocean (p. 200). Moscow: Nauka. Kozlov, V. F. (1984). Models of the topographic vortices in ocean (p. 200). Moscow: Nauka.
10.
go back to reference Lebedev, K. V. (2016). An argo-based model for investigation of the Global Ocean (AMIGO). Oceanology, 56, 172–181.CrossRef Lebedev, K. V. (2016). An argo-based model for investigation of the Global Ocean (AMIGO). Oceanology, 56, 172–181.CrossRef
11.
go back to reference Moshonkin, S. N., Bagno, A. V., Gusev, A. V., Filyushkin, B. N., & Zalesny, V. B. (2017). Physical properties of the Atlantic-Arctic water exchange formation. Izvestiya Atmospheric and Oceanic Physics, 53, 213–223.CrossRef Moshonkin, S. N., Bagno, A. V., Gusev, A. V., Filyushkin, B. N., & Zalesny, V. B. (2017). Physical properties of the Atlantic-Arctic water exchange formation. Izvestiya Atmospheric and Oceanic Physics, 53, 213–223.CrossRef
14.
go back to reference Poulain, P.-M., Warn-Varnas, A., & Niiler, P. P. (1996). Near-surface circulation of the Nordic Seas as measured by Lagrangian drifters. Journal Geophysical Research, 101, 18237–18258.CrossRef Poulain, P.-M., Warn-Varnas, A., & Niiler, P. P. (1996). Near-surface circulation of the Nordic Seas as measured by Lagrangian drifters. Journal Geophysical Research, 101, 18237–18258.CrossRef
15.
go back to reference Raj, R. P., Chafik, L., Nilsen, J. E. Ø., Eldevik, T., & Halo, I. (2015). The Lofoten Vortex of the Nordic Seas. Deep-Sea Research Part I, 96, 1–14.CrossRef Raj, R. P., Chafik, L., Nilsen, J. E. Ø., Eldevik, T., & Halo, I. (2015). The Lofoten Vortex of the Nordic Seas. Deep-Sea Research Part I, 96, 1–14.CrossRef
16.
go back to reference Raj, R. P., & Halo, I. (2016). Monitoring the mesoscale eddies of the Lofoten Basin: Importance, progress, and challenges. International Journal of Remote Sensing, 37, 3712–3728.CrossRef Raj, R. P., & Halo, I. (2016). Monitoring the mesoscale eddies of the Lofoten Basin: Importance, progress, and challenges. International Journal of Remote Sensing, 37, 3712–3728.CrossRef
17.
go back to reference Rodionov, V. B., & Kostianoy, A. G. (1998). Oceanic fronts of the North-European basin seas (293 pp.). Moscow: GEOS (in Russian). Rodionov, V. B., & Kostianoy, A. G. (1998). Oceanic fronts of the North-European basin seas (293 pp.). Moscow: GEOS (in Russian).
18.
go back to reference Rossby, T., Ozhigin, V., Ivshin, V., & Bacon, Sh. (2009). An isopycnal view of the Nordic Seas hydrography with focus on properties of the Lofoten Basin. Deep-Sea Research Part I, 56, 1955–1971.CrossRef Rossby, T., Ozhigin, V., Ivshin, V., & Bacon, Sh. (2009). An isopycnal view of the Nordic Seas hydrography with focus on properties of the Lofoten Basin. Deep-Sea Research Part I, 56, 1955–1971.CrossRef
19.
go back to reference Søiland, H., & Rossby, T. (2013). On the structure of the Lofoten Basin Eddy. Journal of Geophysical Research: Oceans, 118, 4201–4212. Søiland, H., & Rossby, T. (2013). On the structure of the Lofoten Basin Eddy. Journal of Geophysical Research: Oceans, 118, 4201–4212.
20.
go back to reference Sokolovskiy, M. A. (1991). Modeling triple-layer vortical motions in the ocean by the Contour Dynamics Method. Izvestiya Atmospheric and Oceanic Physics, 27, 380–388. Sokolovskiy, M. A. (1991). Modeling triple-layer vortical motions in the ocean by the Contour Dynamics Method. Izvestiya Atmospheric and Oceanic Physics, 27, 380–388.
21.
go back to reference Sokolovskiy, M. A., & Verron, J. (2014). Dynamics of vortex structures in a stratified rotating fluid. In Series Atmospheric and oceanographic sciences library (Vol. 47, p. 382). Switzerland: Springer International Publishing. Sokolovskiy, M. A., & Verron, J. (2014). Dynamics of vortex structures in a stratified rotating fluid. In Series Atmospheric and oceanographic sciences library (Vol. 47, p. 382). Switzerland: Springer International Publishing.
22.
go back to reference Voet, G., Quadfasel, D., Mork, K. A., & Søiland, H. (2010). The mid-depth circulation of the Nordic Seas derived from profiling float observations. Tellus, 62A, 516–529.CrossRef Voet, G., Quadfasel, D., Mork, K. A., & Søiland, H. (2010). The mid-depth circulation of the Nordic Seas derived from profiling float observations. Tellus, 62A, 516–529.CrossRef
23.
go back to reference Volkov, D. L., Belonenko, T. V., & Foux, V. R. (2013). Puzzling over the dynamics of the Lofoten Basin—A sub-Arctic hot spot of ocean variavility. Geophysical Reseach Letters, 40, 738–743.CrossRef Volkov, D. L., Belonenko, T. V., & Foux, V. R. (2013). Puzzling over the dynamics of the Lofoten Basin—A sub-Arctic hot spot of ocean variavility. Geophysical Reseach Letters, 40, 738–743.CrossRef
24.
go back to reference Volkov, D. L., Kubryakov, A. A., & Lumpkin, R. (2015). Formation and variability of the Lofoten Basin vortex in a high-resolution ocean model. Deep-Sea Research Part I, 105, 142–157.CrossRef Volkov, D. L., Kubryakov, A. A., & Lumpkin, R. (2015). Formation and variability of the Lofoten Basin vortex in a high-resolution ocean model. Deep-Sea Research Part I, 105, 142–157.CrossRef
25.
go back to reference Zyryanov, V. N. (1995). Topographic eddies in sea currents dynamics (p. 240). Moscow: Water Problems Institute of RAS (in Russian). Zyryanov, V. N. (1995). Topographic eddies in sea currents dynamics (p. 240). Moscow: Water Problems Institute of RAS (in Russian).
Metadata
Title
Evolution of an Intrathermocline Lens over the Lofoten Basin
Authors
Boris N. Filyushkin
Mikhail A. Sokolovskiy
Konstantin V. Lebedev
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-71934-4_21