Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 3/2019

14-02-2019

Evolution of Crystallographic Structure of M23C6 Carbide Under Thermal Aging of P91 Steel

Authors: Arūnas Baltušnikas, Albertas Grybėnas, Rita Kriūkienė, Irena Lukošiūtė, Vidas Makarevičius

Published in: Journal of Materials Engineering and Performance | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structural changes of P91 steel after different heat treatment and M23C6 lattice expansion are well described by JMA kinetics law; however, the role of molybdenum on the M23C6 lattice expansion is not clearly revealed. The aim of the present work is to investigate the solubility of molybdenum in M23C6 lattice when iron or chromium atoms are replaced by molybdenum and to examine the effect of crystallographic structure changes on the mechanical properties of thermal aged P91 steel. Rietveld analysis of electrochemically extracted residues from the as-received and thermally aged at 600, 650 and 700 °C steel revealed that it is possible to measure and evaluate quantitatively the fraction of 8c crystallographic site occupation by molybdenum atoms of the M23C6 lattice. It was shown that the value of the site occupation factor plotted in natural logarithmic scale increases linearly and obeys Johnson–Mehl–Avrami kinetic law, giving Avrami exponent navg = 0.3356 and activation energy E = 272 kJ/mol. Hardness measurements of the aged samples indicate that the deterioration of properties is closely coherent to the growth of crystallite size.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Czyrska-Filemonowicz, A. Zielińska-Lipiec, and P.J. Ennis, Modified 9% Cr Steels for Advanced Power Generation: Microstructure and Properties, J. Achiev. Mater. Manuf. Eng., 2006, 19(2), p 43–48 A. Czyrska-Filemonowicz, A. Zielińska-Lipiec, and P.J. Ennis, Modified 9% Cr Steels for Advanced Power Generation: Microstructure and Properties, J. Achiev. Mater. Manuf. Eng., 2006, 19(2), p 43–48
2.
go back to reference F. Abe, M. Taneike, and K. Sawada, Alloy Design of Creep Resistant 9Cr Steel Using a Dispersion of Nano-sized Carbonitrides, Int. J. Press. Vessels Pip., 2007, 84(1-2), p 3–12CrossRef F. Abe, M. Taneike, and K. Sawada, Alloy Design of Creep Resistant 9Cr Steel Using a Dispersion of Nano-sized Carbonitrides, Int. J. Press. Vessels Pip., 2007, 84(1-2), p 3–12CrossRef
3.
go back to reference W. Bendick, L. Cipolla, J. Gabrel, and J. Hald, New ECCC Assessment of Creep Ruptures Strength for Steel Grade X10CrMoVNb9-1 (Grade91), Int. J. Press. Vessels Pip., 2010, 87(6), p 304–309CrossRef W. Bendick, L. Cipolla, J. Gabrel, and J. Hald, New ECCC Assessment of Creep Ruptures Strength for Steel Grade X10CrMoVNb9-1 (Grade91), Int. J. Press. Vessels Pip., 2010, 87(6), p 304–309CrossRef
4.
go back to reference F. Abe, Grade 91 Heat-Resistant Martensitic Steel, Coal Power Plant Materials and Life Assessment—Developments and Applications, Woodhead Publishing, Amsterdam, 2014, p 3–49 F. Abe, Grade 91 Heat-Resistant Martensitic Steel, Coal Power Plant Materials and Life Assessment—Developments and Applications, Woodhead Publishing, Amsterdam, 2014, p 3–49
6.
go back to reference D.R. Barbadikar, G.S. Deshmukh, L. Maddi, K. Laha, P. Parameswaran, A.R. Ballal, D.R. Peshwe, R.K. Paretkar, M. Nandagopal, and M.D. Mathew, Effect of Normalizing and Tempering Temperatures on Microstructure and Mechanical Properties of P92 Steel, Int. J. Press. Vessels Pip., 2015, 132-133, p 97–105CrossRef D.R. Barbadikar, G.S. Deshmukh, L. Maddi, K. Laha, P. Parameswaran, A.R. Ballal, D.R. Peshwe, R.K. Paretkar, M. Nandagopal, and M.D. Mathew, Effect of Normalizing and Tempering Temperatures on Microstructure and Mechanical Properties of P92 Steel, Int. J. Press. Vessels Pip., 2015, 132-133, p 97–105CrossRef
7.
go back to reference G. Golański, A. Zielińska-Lipiec, S. Mroziński, and C. Kolan, Microstructural Evolution of Aged Heat-Resistant Cast Steel Following Strain Controlled Fatigue, Mater. Sci. Eng. A, 2015, 627, p 106–110CrossRef G. Golański, A. Zielińska-Lipiec, S. Mroziński, and C. Kolan, Microstructural Evolution of Aged Heat-Resistant Cast Steel Following Strain Controlled Fatigue, Mater. Sci. Eng. A, 2015, 627, p 106–110CrossRef
8.
go back to reference N.I. Medvedeva, D.C. Van Aken, and J.E. Medvedeva, Stability of Binary and Ternary M23C6 Carbides from First Principles, Comput. Mater. Sci., 2015, 96, p 159–164CrossRef N.I. Medvedeva, D.C. Van Aken, and J.E. Medvedeva, Stability of Binary and Ternary M23C6 Carbides from First Principles, Comput. Mater. Sci., 2015, 96, p 159–164CrossRef
9.
go back to reference F.J. Franck, P. Tambuyser, and I. Zubani, X-ray Powder Diffraction Evidence for the Incorporation of W and Mo Into M23C6 Extracted from High-Temperature Alloys, J. Mater. Sci., 1982, 17(10), p 3057–3065CrossRef F.J. Franck, P. Tambuyser, and I. Zubani, X-ray Powder Diffraction Evidence for the Incorporation of W and Mo Into M23C6 Extracted from High-Temperature Alloys, J. Mater. Sci., 1982, 17(10), p 3057–3065CrossRef
10.
go back to reference J.Y. Xie, J. Shen, N. Chen, and S. Seetharaman, Site Preference and Mechanical Properties of Cr23−xTxC6 and Fe21T2C6 (T = Mo, W), Acta Mater., 2006, 54(18), p 4653–4658CrossRef J.Y. Xie, J. Shen, N. Chen, and S. Seetharaman, Site Preference and Mechanical Properties of Cr23−xTxC6 and Fe21T2C6 (T = Mo, W), Acta Mater., 2006, 54(18), p 4653–4658CrossRef
11.
go back to reference A. Aghajani, Ch. Somsen, and G. Eggeler, On the Effect of Long-Term Creep on the Microstructure of a 12% Chromium Tempered Martensite Ferritic Steel, Acta Mater., 2009, 57(17), p 5093–5106CrossRef A. Aghajani, Ch. Somsen, and G. Eggeler, On the Effect of Long-Term Creep on the Microstructure of a 12% Chromium Tempered Martensite Ferritic Steel, Acta Mater., 2009, 57(17), p 5093–5106CrossRef
12.
go back to reference S. Spigarelli, Microstructure-Based Assessment of Creep Rupture Strength in 9Cr Steels, Int. J. Press. Vessels Pip., 2013, 101, p 64–71CrossRef S. Spigarelli, Microstructure-Based Assessment of Creep Rupture Strength in 9Cr Steels, Int. J. Press. Vessels Pip., 2013, 101, p 64–71CrossRef
13.
go back to reference H. Ghassemi-Armaki, R.P. Chen, K. Maruyama, M. Yoshizawa, and M. Igarashi, Static Recovery of Tempered Lath Martensite Microstructures During Long-Term Aging in 9–12% Cr Heat Resistant Steels, Mater. Lett., 2009, 63(28), p 2423–2425CrossRef H. Ghassemi-Armaki, R.P. Chen, K. Maruyama, M. Yoshizawa, and M. Igarashi, Static Recovery of Tempered Lath Martensite Microstructures During Long-Term Aging in 9–12% Cr Heat Resistant Steels, Mater. Lett., 2009, 63(28), p 2423–2425CrossRef
14.
go back to reference J.Y. Xie, N.X. Chen, L.D. Teng, and S. Seetharaman, Atomistic Study on the Site Preference and Thermodynamic Properties for Cr23−xFexC6, Acta Mater., 2005, 53(20), p 5305–5312CrossRef J.Y. Xie, N.X. Chen, L.D. Teng, and S. Seetharaman, Atomistic Study on the Site Preference and Thermodynamic Properties for Cr23−xFexC6, Acta Mater., 2005, 53(20), p 5305–5312CrossRef
15.
go back to reference J.Y. Xie, L.D. Teng, N.X. Chen, and S. Seetharaman, Atomistic Simulation on the Structural Properties and Phase Stability for Cr23C6 and Mn23C6, J. Alloys Compd., 2006, 420(1-2), p 269–272CrossRef J.Y. Xie, L.D. Teng, N.X. Chen, and S. Seetharaman, Atomistic Simulation on the Structural Properties and Phase Stability for Cr23C6 and Mn23C6, J. Alloys Compd., 2006, 420(1-2), p 269–272CrossRef
16.
go back to reference F. Abe, T. Horiuchi, M. Taneike, K. Kimura, S. Muneki, and H. Okada, Microstructure Design Near Grain Boundaries for Creep Resistant Tempered-Martensitic 9Cr Steels for 650 °C USC Boilers, in Proceedings of TMS Symposium on Creep Deformation: Fundamentals and Applications, Seattle, USA, ed. by R.S., Mishra, J.C. Earthman, S.V. Raj 2002, p 341–350 F. Abe, T. Horiuchi, M. Taneike, K. Kimura, S. Muneki, and H. Okada, Microstructure Design Near Grain Boundaries for Creep Resistant Tempered-Martensitic 9Cr Steels for 650 °C USC Boilers, in Proceedings of TMS Symposium on Creep Deformation: Fundamentals and Applications, Seattle, USA, ed. by R.S., Mishra, J.C. Earthman, S.V. Raj 2002, p 341–350
17.
go back to reference F. Abe, T. Horiuchi, M. Taneike, and K. Sawada, Stabilization of Martensitic Microstructure in Advanced 9Cr Steel During Creep at High Temperature, Mater. Sci. Eng. A, 2004, 378(1-2), p 299–303CrossRef F. Abe, T. Horiuchi, M. Taneike, and K. Sawada, Stabilization of Martensitic Microstructure in Advanced 9Cr Steel During Creep at High Temperature, Mater. Sci. Eng. A, 2004, 378(1-2), p 299–303CrossRef
18.
go back to reference A. Baltušnikas, I. Lukošiūtė, V. Makarevičius, R. Kriūkienė, and A. Grybėnas, Influence of Thermal Exposure on Structural Changes of M23C6 Carbide in P91 Steel, J. Mater. Eng. Perform., 2016, 25(5), p 1945–1951CrossRef A. Baltušnikas, I. Lukošiūtė, V. Makarevičius, R. Kriūkienė, and A. Grybėnas, Influence of Thermal Exposure on Structural Changes of M23C6 Carbide in P91 Steel, J. Mater. Eng. Perform., 2016, 25(5), p 1945–1951CrossRef
19.
go back to reference A. Le Bail, H. Duroy, and J.L. Fourquet, Ab Initio Structure Determination of LiSbWO6 by X-ray Powder Diffraction, Mater. Res. Bull., 1988, 23(3), p 447–452CrossRef A. Le Bail, H. Duroy, and J.L. Fourquet, Ab Initio Structure Determination of LiSbWO6 by X-ray Powder Diffraction, Mater. Res. Bull., 1988, 23(3), p 447–452CrossRef
20.
go back to reference Bruker AXS, TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data. User’s Manual, Bruker AXS, Karlsruhe, Germany, 2008 Bruker AXS, TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data. User’s Manual, Bruker AXS, Karlsruhe, Germany, 2008
21.
go back to reference R.W. Cheary, A.A. Coelho, and J.P. Cline, Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers, J. Res. Natl. Inst. Stand. Technol., 2004, 109(1), p 1–25CrossRef R.W. Cheary, A.A. Coelho, and J.P. Cline, Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers, J. Res. Natl. Inst. Stand. Technol., 2004, 109(1), p 1–25CrossRef
23.
go back to reference C.M. Fang, M.A. van Huis, M.H.F. Sluiter, and H.W. Zandbergen, Stability, Structure and Electronic properties Of γ-Fe23C6 from First-Principles Theory, Acta Mater., 2010, 58(8), p 2968–2977CrossRef C.M. Fang, M.A. van Huis, M.H.F. Sluiter, and H.W. Zandbergen, Stability, Structure and Electronic properties Of γ-Fe23C6 from First-Principles Theory, Acta Mater., 2010, 58(8), p 2968–2977CrossRef
24.
go back to reference V.K. Pecharsky and P.E. Zavalji, Fundamentals of Powder Diffraction and Structural Characterization of Materials, Springer, New York, 2003, p 713 V.K. Pecharsky and P.E. Zavalji, Fundamentals of Powder Diffraction and Structural Characterization of Materials, Springer, New York, 2003, p 713
25.
go back to reference J.W. Christian, The Theory of Transformation in Metals and Alloys, 2nd ed., Pergamon, New York, 1975, p 586 J.W. Christian, The Theory of Transformation in Metals and Alloys, 2nd ed., Pergamon, New York, 1975, p 586
26.
go back to reference A. Baltušnikas, R. Levinskas, and I. Lukošiūte, Analysis of Heat Resistant Steel State by Changes of Lattices Parameters of Carbide Phases, Mater. Sci. Medzg., 2008, 14(3), p 210–214 A. Baltušnikas, R. Levinskas, and I. Lukošiūte, Analysis of Heat Resistant Steel State by Changes of Lattices Parameters of Carbide Phases, Mater. Sci. Medzg., 2008, 14(3), p 210–214
27.
go back to reference H. Nitta, T. Yamamoto, R. Kanno, K. Takasawa, T. Iida, Y. Yamazaki, S. Ogu, and Y. Iijima, Diffusion of Molybdenum in α-Iron, Acta Mater., 2002, 50(16), p 4117–4125CrossRef H. Nitta, T. Yamamoto, R. Kanno, K. Takasawa, T. Iida, Y. Yamazaki, S. Ogu, and Y. Iijima, Diffusion of Molybdenum in α-Iron, Acta Mater., 2002, 50(16), p 4117–4125CrossRef
28.
go back to reference H.K.D.H. Bhadeshia, Design of Ferritic Creep-Resistant Steels, ISIJ Int., 2001, 41(6), p 626–640CrossRef H.K.D.H. Bhadeshia, Design of Ferritic Creep-Resistant Steels, ISIJ Int., 2001, 41(6), p 626–640CrossRef
29.
go back to reference Y. Xu, X. Zhang, Y. Tian, Ch. Chen, Y. Nan, H. He, and M. Wang, Study on the Nucleation and Growth of M23C6 Carbides in a 10% Cr Martensite Ferritic Steel After Long-Term Aging, Mater. Charact., 2016, 111, p 122–127CrossRef Y. Xu, X. Zhang, Y. Tian, Ch. Chen, Y. Nan, H. He, and M. Wang, Study on the Nucleation and Growth of M23C6 Carbides in a 10% Cr Martensite Ferritic Steel After Long-Term Aging, Mater. Charact., 2016, 111, p 122–127CrossRef
30.
go back to reference C. Pandey, A. Giri, and M.M. Mahapatra, Evolution of Phases in P91 Steel in Various Heat Treatment Conditions and Their Effect on Microstructure Stability and Mechanical Properties, Mater. Sci. Eng. A, 2016, 664, p 58–74CrossRef C. Pandey, A. Giri, and M.M. Mahapatra, Evolution of Phases in P91 Steel in Various Heat Treatment Conditions and Their Effect on Microstructure Stability and Mechanical Properties, Mater. Sci. Eng. A, 2016, 664, p 58–74CrossRef
31.
go back to reference F. Masuyama, Hardness Model for Creep-Life Assessment of High-Strength Martensitic Steels, Mater. Sci. Eng. A, 2009, 510–511, p 154–157CrossRef F. Masuyama, Hardness Model for Creep-Life Assessment of High-Strength Martensitic Steels, Mater. Sci. Eng. A, 2009, 510–511, p 154–157CrossRef
32.
go back to reference S. Khayatzadeh, D.W.J. Tanner, C.E. Truman, P.E.J. Flewitt, and D.J. Smith, Influence of Thermal Ageing on the Creep Behaviour of a P92 Martensitic Steel, Mater. Sci. Eng. A, 2017, 708, p 544–555CrossRef S. Khayatzadeh, D.W.J. Tanner, C.E. Truman, P.E.J. Flewitt, and D.J. Smith, Influence of Thermal Ageing on the Creep Behaviour of a P92 Martensitic Steel, Mater. Sci. Eng. A, 2017, 708, p 544–555CrossRef
33.
go back to reference A. Grybėnas, V. Makarevičius, A. Baltušnikas, I. Lukošiūtė, and R. Kriūkienė, Correlation Between Structural Changes of M23C6 Carbide and Mechanical Behaviour of P91 Steel After Thermal Aging, Mater. Sci. Eng. A, 2017, 696, p 453–460CrossRef A. Grybėnas, V. Makarevičius, A. Baltušnikas, I. Lukošiūtė, and R. Kriūkienė, Correlation Between Structural Changes of M23C6 Carbide and Mechanical Behaviour of P91 Steel After Thermal Aging, Mater. Sci. Eng. A, 2017, 696, p 453–460CrossRef
Metadata
Title
Evolution of Crystallographic Structure of M23C6 Carbide Under Thermal Aging of P91 Steel
Authors
Arūnas Baltušnikas
Albertas Grybėnas
Rita Kriūkienė
Irena Lukošiūtė
Vidas Makarevičius
Publication date
14-02-2019
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 3/2019
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-03935-1

Other articles of this Issue 3/2019

Journal of Materials Engineering and Performance 3/2019 Go to the issue

Premium Partners