Skip to main content
Top

2022 | OriginalPaper | Chapter

6. Evolution of Topography Under Low-Energy Ion Bombardment

Author : Bernd Rauschenbach

Published in: Low-Energy Ion Irradiation of Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The sputtering of the surface by low-energy ion irradiation presented in the last chapter leads directly to roughening of the surface. The behavior can be described by relations of dynamic scaling theory and stochastic growth equations. The surface after ion irradiation with ion energies above the displacement energy is initially characterized by the formation of vacancies, interstitial sites, and adatoms, some of which coalesce into clusters. The kinetics of growth of surface defects in the early stages of ion irradiation is influenced primarily by two factors, the ion energy and the temperature during bombardment. In the specific case of a high nuclear energy loss, carters are created. As ion irradiation progresses, increasingly extended defects form on the surface, whereby a distinction must be made between intra- and Inter-crystalline surface defects. The evolution of individual defects such as cones, pyramids, etch pits, facets, etc. is discussed in detail as a function of the irradiation parameters. The theoretical description of ion beam-induced surface evolution is based on the assumption that the sputtering yield is exclusively a function of the local surface curvature and higher spatial derivatives of the local surface height. This assumption allows the surface evolution to be considered spatially and temporally as a moving wavefront and to apply geometrical methods developed in optics. Finally, secondary ion beam-induced mechanisms, such as grazing incidence ion reflection, re-deposition, shadowing, surface diffusion, non-uniform bombardment, viscous flow, and swelling are presented, which can have an additional significant effect on the topography evolution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Stark, G. Wendt, Über das Eindringen von Kanalstrahlen in feste Körper. Ann. Physik 38, 921–940 (1912)CrossRef J. Stark, G. Wendt, Über das Eindringen von Kanalstrahlen in feste Körper. Ann. Physik 38, 921–940 (1912)CrossRef
2.
go back to reference G. Carter, J.S. Colligan, Ion Bombardment of Solids (Heinemann, London, 1968) G. Carter, J.S. Colligan, Ion Bombardment of Solids (Heinemann, London, 1968)
3.
go back to reference G.S. Bales, R. Bruinsma, E.A. Eklund, R.P.U. Karunasiri, J. Rudnick, A. Zangwill, Growth and erosion of thin solid films. Science 249, 264–268 (1990)CrossRef G.S. Bales, R. Bruinsma, E.A. Eklund, R.P.U. Karunasiri, J. Rudnick, A. Zangwill, Growth and erosion of thin solid films. Science 249, 264–268 (1990)CrossRef
4.
go back to reference P. Bedrossian, J.E. Houston, J.Y. Tsao, E. Chason, S.T. Picraux, Layer-by-layer sputtering and epitaxy of Si(100). Phys. Rev. Lett. 67, 124–127 (1991)CrossRef P. Bedrossian, J.E. Houston, J.Y. Tsao, E. Chason, S.T. Picraux, Layer-by-layer sputtering and epitaxy of Si(100). Phys. Rev. Lett. 67, 124–127 (1991)CrossRef
5.
go back to reference H. Watanabe, M. Ichikawa, Initial stage of layer-by-layer sputtering of Si(111) surfaces studied by scanning reflection electron microscopy. Appl. Phys. Lett. 68, 2514–2516 (1996)CrossRef H. Watanabe, M. Ichikawa, Initial stage of layer-by-layer sputtering of Si(111) surfaces studied by scanning reflection electron microscopy. Appl. Phys. Lett. 68, 2514–2516 (1996)CrossRef
6.
go back to reference H. Watanabe, M. Ichikawa, Layer-by-layer sputtering of Si(111) and (001) surfaces mediated by surface vacancy diffusion: surface physics and application for nanofabrication. J. Vac. Sci. Technol. B 15, 2666–2671 (1997)CrossRef H. Watanabe, M. Ichikawa, Layer-by-layer sputtering of Si(111) and (001) surfaces mediated by surface vacancy diffusion: surface physics and application for nanofabrication. J. Vac. Sci. Technol. B 15, 2666–2671 (1997)CrossRef
7.
go back to reference E. Chason, P. Bedrossian, J.E. Houston, J.Y. Tsao, B.W. Dodson, S.T. Picraurx, Simulations of layer-by-layer sputtering during epitaxy. Appl. Phys. Lett. 59, 3533–3535 (1991)CrossRef E. Chason, P. Bedrossian, J.E. Houston, J.Y. Tsao, B.W. Dodson, S.T. Picraurx, Simulations of layer-by-layer sputtering during epitaxy. Appl. Phys. Lett. 59, 3533–3535 (1991)CrossRef
8.
go back to reference P. Smilauer, M.R. Wilby, D.D. Vvedensky, Morphology of singular and vicinal metal surfaces sputtered at different temperatures. Surf. Sci. Lett. 291, L733–L738 (1993) and Shape of the surface-step-density oscillations during sputtering of singular and vicinal surfaces. Phys. Rev. B 48, 4968–4971 (1993) P. Smilauer, M.R. Wilby, D.D. Vvedensky, Morphology of singular and vicinal metal surfaces sputtered at different temperatures. Surf. Sci. Lett. 291, L733–L738 (1993) and Shape of the surface-step-density oscillations during sputtering of singular and vicinal surfaces. Phys. Rev. B 48, 4968–4971 (1993)
9.
go back to reference Y. Zhao, G.-C. Wang, T.-M. Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Application (Academic Press, San Diego, 2001) Y. Zhao, G.-C. Wang, T.-M. Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Application (Academic Press, San Diego, 2001)
10.
go back to reference J.M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, 1989) J.M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, 1989)
11.
go back to reference B. Ziberi, F. Frost, Th. Höche, B. Rauschenbach, Ripple pattern formation on silicon surfaces by low-energy ion beam erosion: experiment and theory. Phys. Rev. B 72, 235310 (2005) B. Ziberi, F. Frost, Th. Höche, B. Rauschenbach, Ripple pattern formation on silicon surfaces by low-energy ion beam erosion: experiment and theory. Phys. Rev. B 72, 235310 (2005)
12.
go back to reference V. Solanki, D. Kabiraj, D.K. Avasthi, S. Varma, Topographic evolution and scaling study of ZnO (0001) single crystal after low-energy atom beam irradiation. Nucl. Instr. Meth. Phys. Res. B 343, 56–60 (2018)CrossRef V. Solanki, D. Kabiraj, D.K. Avasthi, S. Varma, Topographic evolution and scaling study of ZnO (0001) single crystal after low-energy atom beam irradiation. Nucl. Instr. Meth. Phys. Res. B 343, 56–60 (2018)CrossRef
13.
go back to reference A. Toma, F. Buatier de Mongeot, R. Buzio, G. Firpo, S.R. Bhattacharyya, C. Boragno, U. Valbusa, Ion beam erosion of amorphous materials: evolution of surface morphology. Nucl. Instr. Meth. Phys. Res. B 230, 551–554 (2005) A. Toma, F. Buatier de Mongeot, R. Buzio, G. Firpo, S.R. Bhattacharyya, C. Boragno, U. Valbusa, Ion beam erosion of amorphous materials: evolution of surface morphology. Nucl. Instr. Meth. Phys. Res. B 230, 551–554 (2005)
14.
go back to reference F. Frost, A. Schindler, F. Bigl, Roughness evolution of ion sputtered rotating InP surfaces: pattern formation and scaling laws. Phys. Rev. Lett. 85, 4116–4119 (2000)CrossRef F. Frost, A. Schindler, F. Bigl, Roughness evolution of ion sputtered rotating InP surfaces: pattern formation and scaling laws. Phys. Rev. Lett. 85, 4116–4119 (2000)CrossRef
15.
go back to reference A.C.-T. Chan, G.-C. Wang, Roughness evolution of Si(111) by low-energy ion bombardment. Surf. Sci. 414, 17–22 (1998)CrossRef A.C.-T. Chan, G.-C. Wang, Roughness evolution of Si(111) by low-energy ion bombardment. Surf. Sci. 414, 17–22 (1998)CrossRef
16.
go back to reference T.M. Mayer, E. Chason, A.J. Howard, Roughening instability and ion-induced viscous relaxation of SiO2 surfaces. J. Appl. Phys. 76, 1633–1643 (1994)CrossRef T.M. Mayer, E. Chason, A.J. Howard, Roughening instability and ion-induced viscous relaxation of SiO2 surfaces. J. Appl. Phys. 76, 1633–1643 (1994)CrossRef
17.
go back to reference E.A. Eklund, E.J. Snyder, R.S. Williams, Correlation from randomness: quantitative analysis of ion-etched graphite surfaces using the scanning tunneling microscope. Surf. Sci. 285, 157–180 (1993)CrossRef E.A. Eklund, E.J. Snyder, R.S. Williams, Correlation from randomness: quantitative analysis of ion-etched graphite surfaces using the scanning tunneling microscope. Surf. Sci. 285, 157–180 (1993)CrossRef
18.
go back to reference E. Chason, T.M. Mayer, A. Payne, D. Wu, In situ energy dispersive x-ray reflectivity measurements of H ion bombardment on SiO2/Si and Si. Appl. Phys. Lett. 60, 2353–2355 (1992)CrossRef E. Chason, T.M. Mayer, A. Payne, D. Wu, In situ energy dispersive x-ray reflectivity measurements of H ion bombardment on SiO2/Si and Si. Appl. Phys. Lett. 60, 2353–2355 (1992)CrossRef
19.
go back to reference F. Family, T. Viscek, Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991)CrossRef F. Family, T. Viscek, Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991)CrossRef
20.
go back to reference A.-L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)CrossRef A.-L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)CrossRef
21.
go back to reference T. Halpin-Healy, Y.-C. Zhang, Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Phys. Rep. 254, 215–414 (1995)CrossRef T. Halpin-Healy, Y.-C. Zhang, Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Phys. Rep. 254, 215–414 (1995)CrossRef
22.
go back to reference J. Krug, Origins of scale invariance in growth processes. Adv. Phys. 46, 139–282 (1997)CrossRef J. Krug, Origins of scale invariance in growth processes. Adv. Phys. 46, 139–282 (1997)CrossRef
23.
go back to reference P. Meakin, Fractals, Scaling and Growth far from Equilibrium (Cambridge University Press, Cambridge, 1998) P. Meakin, Fractals, Scaling and Growth far from Equilibrium (Cambridge University Press, Cambridge, 1998)
24.
go back to reference M. Pelliccione, T.-M. Lu, Evolution of Thin Film Morphology (Springer, Berlin, 2008) M. Pelliccione, T.-M. Lu, Evolution of Thin Film Morphology (Springer, Berlin, 2008)
25.
go back to reference F. Family, T. Vicsek, Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J. Phys. A Math. Gen. 18, L75–L81 (1985)CrossRef F. Family, T. Vicsek, Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J. Phys. A Math. Gen. 18, L75–L81 (1985)CrossRef
26.
go back to reference P. Karmakar, D. Ghose, Low-energy Ar+ ion beam-induced kinetic roughening of thin Pt films on a Si substrate. Nucl. Instr. Meth. Phys. Res. B 222, 477–483 (2004)CrossRef P. Karmakar, D. Ghose, Low-energy Ar+ ion beam-induced kinetic roughening of thin Pt films on a Si substrate. Nucl. Instr. Meth. Phys. Res. B 222, 477–483 (2004)CrossRef
27.
go back to reference R. Cuerno, H.A. Makse, S. Tomassone, S.T. Harrington, H.E. Stanley, Stochastic model for surface erosion via ion-sputtering: dynamical evolution from ripple morphology to rough morphology. Phys. Rev. Lett. 75, 4464–4467 (1995)CrossRef R. Cuerno, H.A. Makse, S. Tomassone, S.T. Harrington, H.E. Stanley, Stochastic model for surface erosion via ion-sputtering: dynamical evolution from ripple morphology to rough morphology. Phys. Rev. Lett. 75, 4464–4467 (1995)CrossRef
28.
go back to reference J.T. Drotar, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, Numerical analysis of the noisy Kuramoto-Sivashinsky equation in 2+1 dimensions. Phys. Rev. E 59, 177–185 (1999) and Surface roughening in shadowing growth and etching in 2+1 dimensions. Phys. Rev. B 62, 2118–2125 (2000) J.T. Drotar, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, Numerical analysis of the noisy Kuramoto-Sivashinsky equation in 2+1 dimensions. Phys. Rev. E 59, 177185 (1999) and Surface roughening in shadowing growth and etching in 2+1 dimensions. Phys. Rev. B 62, 2118–2125 (2000)
29.
go back to reference R.M. Bradley, J.M.E. Harper, Theory of ripple topography induced by ion bombardment. J. Vac. Sci. Technol. A 6, 2390–2396 (1988)CrossRef R.M. Bradley, J.M.E. Harper, Theory of ripple topography induced by ion bombardment. J. Vac. Sci. Technol. A 6, 2390–2396 (1988)CrossRef
30.
go back to reference R. Cuerno, A.-L. Barabási, Dynamic scaling of ion-sputtered surfaces. Phys. Rev. Lett. 74, 4746–4749 (1995) R. Cuerno, A.-L. Barabási, Dynamic scaling of ion-sputtered surfaces. Phys. Rev. Lett. 74, 4746–4749 (1995)
31.
go back to reference S.A. Pahlovy, S.F. Mahmud, K. Yanagimoto, N. Aikawa, I. Miyamoto, Roughening and smoothing behavior of single crystal Si by low energy Ar+ ion bombardment. Nucl. Instr. Meth. Phys. Res. B 272, 206–209 (2012)CrossRef S.A. Pahlovy, S.F. Mahmud, K. Yanagimoto, N. Aikawa, I. Miyamoto, Roughening and smoothing behavior of single crystal Si by low energy Ar+ ion bombardment. Nucl. Instr. Meth. Phys. Res. B 272, 206–209 (2012)CrossRef
32.
go back to reference A. Keller, S. Facsko, R. Cuerno, Numerical integrator for continuum equations of surface growth and erosion, in Computational Nanotechnology: Modeling and Application with MATLAB, ed. by S.M. Musa (Taylor & Francis Group, Boca Raton, 2012), pp. 189–215 A. Keller, S. Facsko, R. Cuerno, Numerical integrator for continuum equations of surface growth and erosion, in Computational Nanotechnology: Modeling and Application with MATLAB, ed. by S.M. Musa (Taylor & Francis Group, Boca Raton, 2012), pp. 189–215
33.
go back to reference S.F. Edwards, D.R. Wilkinson, The surface statistics of a granular aggregate. Proc. Roy. Soc. Lond. Ser. A 381, 17–31 (1982)CrossRef S.F. Edwards, D.R. Wilkinson, The surface statistics of a granular aggregate. Proc. Roy. Soc. Lond. Ser. A 381, 17–31 (1982)CrossRef
34.
go back to reference M. Kadar, G. Parisi, Y.-C. Zhang, Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)CrossRef M. Kadar, G. Parisi, Y.-C. Zhang, Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)CrossRef
35.
go back to reference W.W. Mullins, Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957) and Flattening of a nearly plane solid surface due to capillarity. J. Appl. Phys. 30, 77–83 (1959) W.W. Mullins, Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957) and Flattening of a nearly plane solid surface due to capillarity. J. Appl. Phys. 30, 77–83 (1959)
36.
go back to reference D. Michelson, Steady solutions of the Kuramoto-Sivashisky equation. Physica D 19, 89–111 (1986)CrossRef D. Michelson, Steady solutions of the Kuramoto-Sivashisky equation. Physica D 19, 89–111 (1986)CrossRef
37.
go back to reference I. Koponen, M. Hautala, O.-P. Sievänen, Simulations of submicrometer-scale roughening on ion-bombarded solid surfaces. Phys. Rev. B 54, 13502–13505 (1996)CrossRef I. Koponen, M. Hautala, O.-P. Sievänen, Simulations of submicrometer-scale roughening on ion-bombarded solid surfaces. Phys. Rev. B 54, 13502–13505 (1996)CrossRef
38.
go back to reference I. Koponen, M. Hautala, O.-P. Sievänen, Simulations of self-affine roughening and ripple formation on ion bombarded amorphous carbon surfaces. Nucl. Instr. Meth. B 129, 349–355 (1997)CrossRef I. Koponen, M. Hautala, O.-P. Sievänen, Simulations of self-affine roughening and ripple formation on ion bombarded amorphous carbon surfaces. Nucl. Instr. Meth. B 129, 349–355 (1997)CrossRef
39.
go back to reference H.-N. Yang, G.-C. Wang, T.-M. Lu, Anomalous dynamic scaling on the ion-sputtered Si(111) surface. Phys. Rev. B 50, 7635–7639 (1994)CrossRef H.-N. Yang, G.-C. Wang, T.-M. Lu, Anomalous dynamic scaling on the ion-sputtered Si(111) surface. Phys. Rev. B 50, 7635–7639 (1994)CrossRef
40.
go back to reference X.-S. Wang, R.J. Pechman, J.H. Weaver, Trends in surface roughening: analysis of ion-sputtered GaAs(110). Surf. Sci. 364, L511–L518 (1996)CrossRef X.-S. Wang, R.J. Pechman, J.H. Weaver, Trends in surface roughening: analysis of ion-sputtered GaAs(110). Surf. Sci. 364, L511–L518 (1996)CrossRef
41.
go back to reference D.-M. Smilgies, P.J. Eng, E. Landemark, M. Nielsen, Sputtering of Ge (001): transition between dynamic scaling regimes. Surf. Sci. 377, 1038–1041 (1997)CrossRef D.-M. Smilgies, P.J. Eng, E. Landemark, M. Nielsen, Sputtering of Ge (001): transition between dynamic scaling regimes. Surf. Sci. 377, 1038–1041 (1997)CrossRef
42.
go back to reference D. Chowdhury, D. Ghose, S.A. Mollick, Homoepitaxy of germanium by hyperthermal ion irradiation. Vacuum 107, 23–27 (2014)CrossRef D. Chowdhury, D. Ghose, S.A. Mollick, Homoepitaxy of germanium by hyperthermal ion irradiation. Vacuum 107, 23–27 (2014)CrossRef
43.
go back to reference D.E. Harrison, R.P. Webb, The creation of surface damages by ion beam bombardment. Nucl. Instr. Meth. Phys. Res. 218, 727–736 (1983) and R.P. Webb, D.E. Harrison, Computer simulation of pit formation in metals by ion bombardment. Phys. Rev. Lett. 50, 1478–1481 (1983) D.E. Harrison, R.P. Webb, The creation of surface damages by ion beam bombardment. Nucl. Instr. Meth. Phys. Res. 218, 727736 (1983) and R.P. Webb, D.E. Harrison, Computer simulation of pit formation in metals by ion bombardment. Phys. Rev. Lett. 50, 1478–1481 (1983)
44.
go back to reference J. Mäkinen, A. Vehanen, P. Hautojärvi, H. Huomo, J. Lahtinen, R.M. Nieminen, S. Valkealahti, Vacancy-type defect distribution near argon sputtered Al(110) surface studied by variable-energy positrons and molecular dynamics simulations. Surf. Sci. 175, 385–414 (1986)CrossRef J. Mäkinen, A. Vehanen, P. Hautojärvi, H. Huomo, J. Lahtinen, R.M. Nieminen, S. Valkealahti, Vacancy-type defect distribution near argon sputtered Al(110) surface studied by variable-energy positrons and molecular dynamics simulations. Surf. Sci. 175, 385–414 (1986)CrossRef
45.
go back to reference F. Karetta, H.M. Urbassek, Moleculardynamics simulations of bulk and surface damage production in low energy Cu→Cu bombardment. J. Appl. Phys. 71, 5410–5418 (1992)CrossRef F. Karetta, H.M. Urbassek, Moleculardynamics simulations of bulk and surface damage production in low energy Cu→Cu bombardment. J. Appl. Phys. 71, 5410–5418 (1992)CrossRef
46.
go back to reference G. Kornich, G. Betz, Two step simulation of low energy ion beam mixing at different temperatures. Nucl. Instr. Meth. Phys. Res. B 117, 81–89 (1996)CrossRef G. Kornich, G. Betz, Two step simulation of low energy ion beam mixing at different temperatures. Nucl. Instr. Meth. Phys. Res. B 117, 81–89 (1996)CrossRef
47.
go back to reference M.V.R. Murty, H.A. Atwater, Defect generation and morphology of (001) Si surfaces during low-energy Ar-ion bombardment. Phys. Rev. B 45, 1507–1510 (1992)CrossRef M.V.R. Murty, H.A. Atwater, Defect generation and morphology of (001) Si surfaces during low-energy Ar-ion bombardment. Phys. Rev. B 45, 1507–1510 (1992)CrossRef
48.
go back to reference H. Hensel, H.M. Urbassek, Implantation and damage under low-energy Si self-bombardment. Phys. Rev. B 57, 4756–4763 (1998) and Disordering and annealing of a Si surface under low-energy Si bombardment. Rad. Eff. Defects Solids 143, 297–315 (1997) H. Hensel, H.M. Urbassek, Implantation and damage under low-energy Si self-bombardment. Phys. Rev. B 57, 47564763 (1998) and Disordering and annealing of a Si surface under low-energy Si bombardment. Rad. Eff. Defects Solids 143, 297–315 (1997)
49.
go back to reference J. Tarus, K. Nordlund, A. Kuronen, J. Keinonen, Effect of surface on defect creation by self-ion bombardment. Phys. Rev. B 58, 9907–9915 (1998)CrossRef J. Tarus, K. Nordlund, A. Kuronen, J. Keinonen, Effect of surface on defect creation by self-ion bombardment. Phys. Rev. B 58, 9907–9915 (1998)CrossRef
50.
go back to reference T. Seki, T. Aoki, J. Matsuo, I. Yamada, STM observation of surface vacancies created by ion impact. Nucl. Instrum. Meth. Phys. Res. B 164–165, 650–655 (2000)CrossRef T. Seki, T. Aoki, J. Matsuo, I. Yamada, STM observation of surface vacancies created by ion impact. Nucl. Instrum. Meth. Phys. Res. B 164–165, 650–655 (2000)CrossRef
51.
go back to reference W.L. Chan, E. Chason, Making waves: kinetic processes controlling surface evolution during low energy ion sputtering. J. Appl. Phys. 101, 121301 (2007) W.L. Chan, E. Chason, Making waves: kinetic processes controlling surface evolution during low energy ion sputtering. J. Appl. Phys. 101, 121301 (2007)
52.
go back to reference C. Busse, C. Engin, H. Hansen, U. Linke, T. Michely, H.M. Urbassek, Adatom formation and atomic layer growth on Al(111) by ion bombardment: experiments and molecular dynamics simulations. Surf. Sci. 488, 346–366 (2001)CrossRef C. Busse, C. Engin, H. Hansen, U. Linke, T. Michely, H.M. Urbassek, Adatom formation and atomic layer growth on Al(111) by ion bombardment: experiments and molecular dynamics simulations. Surf. Sci. 488, 346–366 (2001)CrossRef
53.
go back to reference T. Michely, C. Teichert, Adatom yields, sputtering yields, and damage patterns of single-ion impacts on Pt(111). Phys. Rev. B 50, 11156–11166 (1994)CrossRef T. Michely, C. Teichert, Adatom yields, sputtering yields, and damage patterns of single-ion impacts on Pt(111). Phys. Rev. B 50, 11156–11166 (1994)CrossRef
54.
go back to reference T. Michely, G. Comsa, Generation and nucleation of adatoms during ion bombardment of Pt(111). Phys. Rev. B 44, 8411–8414 (1991)CrossRef T. Michely, G. Comsa, Generation and nucleation of adatoms during ion bombardment of Pt(111). Phys. Rev. B 44, 8411–8414 (1991)CrossRef
55.
go back to reference C. Teichert, M. Hohage, T. Michely, G. Comsa, Nuclei of the Pt(111) network reconstruction created by single ion impacts. Phys. Rev. Lett. 72, 1682–1685 (1994)CrossRef C. Teichert, M. Hohage, T. Michely, G. Comsa, Nuclei of the Pt(111) network reconstruction created by single ion impacts. Phys. Rev. Lett. 72, 1682–1685 (1994)CrossRef
56.
go back to reference M. Morgenstern, T. Michely, G. Comsa, Collective effects in adatom production by 4.5 keV rare gas impacts on Pt(111)—a low temperature scanning tunneling microscopy analysis. Philos. Mag. A 79, 775–794 (1999) M. Morgenstern, T. Michely, G. Comsa, Collective effects in adatom production by 4.5 keV rare gas impacts on Pt(111)—a low temperature scanning tunneling microscopy analysis. Philos. Mag. A 79, 775–794 (1999)
57.
go back to reference J.C. Girard, Y. Samson, S. Gauthier, S. Rousset, J. Klein, STM study of the nucleation and annealing of ion bombardment induced defects on Cu(100). Surf. Sci. 302, 73–80 (1994)CrossRef J.C. Girard, Y. Samson, S. Gauthier, S. Rousset, J. Klein, STM study of the nucleation and annealing of ion bombardment induced defects on Cu(100). Surf. Sci. 302, 73–80 (1994)CrossRef
58.
go back to reference J. Naumann, J. Osing, A.J. Quinn, I.V. Shvets, Morphology of sputtering damage on Cu(111) studied by scanning tunneling microscopy. Surf. Sci. 388, 212–219 (1997)CrossRef J. Naumann, J. Osing, A.J. Quinn, I.V. Shvets, Morphology of sputtering damage on Cu(111) studied by scanning tunneling microscopy. Surf. Sci. 388, 212–219 (1997)CrossRef
59.
go back to reference C.A. Lang, C.F. Quate, J. Nogami, Initial stages of sputtering on Au(l11) as seen by scanning tunneling microscopy. Appl. Phys. Lett. 59, 1696–1698 (1991)CrossRef C.A. Lang, C.F. Quate, J. Nogami, Initial stages of sputtering on Au(l11) as seen by scanning tunneling microscopy. Appl. Phys. Lett. 59, 1696–1698 (1991)CrossRef
60.
go back to reference X.-S. Wang, R.J. Pechman, J.H. Weaver, Ion sputtering of GaAs(110): from individual bombardment events to multilayer removal. J. Vac. Sci. Technol. B 51, 10931–10940 (1995) and R.J. Pechman, X.-S. Wang, J.H. Weaver, Vacancy kinetics and sputtering of GaAs(110). Phys. Rev. B 51, 10929–10936 (1995) X.-S. Wang, R.J. Pechman, J.H. Weaver, Ion sputtering of GaAs(110): from individual bombardment events to multilayer removal. J. Vac. Sci. Technol. B 51, 1093110940 (1995) and R.J. Pechman, X.-S. Wang, J.H. Weaver, Vacancy kinetics and sputtering of GaAs(110). Phys. Rev. B 51, 10929–10936 (1995)
61.
go back to reference K. Kyuno, D.G. Cahill, R.S. Averback, J. Tarus, K. Nordlund, Surface defects and bulk defect migration produced by ion bombardment of Si(001). Phys. Rev. Lett. 83, 4788–4791 (1999) K. Kyuno, D.G. Cahill, R.S. Averback, J. Tarus, K. Nordlund, Surface defects and bulk defect migration produced by ion bombardment of Si(001). Phys. Rev. Lett. 83, 4788–4791 (1999)
62.
go back to reference H.J.W. Zandvliet, H.B. Elswijk, E.J. van Loenen, I.S.T. Tsong, Scanning tunneling microscopy and spectroscopy of ion-bombarded Si(111) and Si(100) surfaces. Phys. Rev. B 46, 7581–7587 (1992)CrossRef H.J.W. Zandvliet, H.B. Elswijk, E.J. van Loenen, I.S.T. Tsong, Scanning tunneling microscopy and spectroscopy of ion-bombarded Si(111) and Si(100) surfaces. Phys. Rev. B 46, 7581–7587 (1992)CrossRef
63.
go back to reference H. Feil, H.J.W. Zandvliet, M.-H. Tsai, J.D. Dow, I.S.T. Tsong, Random and ordered defects on ion-bombarded Si (100)-(2× 1) surfaces. Phys. Rev. Lett. 69, 3076–3079 (1992)CrossRef H. Feil, H.J.W. Zandvliet, M.-H. Tsai, J.D. Dow, I.S.T. Tsong, Random and ordered defects on ion-bombarded Si (100)-(2× 1) surfaces. Phys. Rev. Lett. 69, 3076–3079 (1992)CrossRef
64.
go back to reference T. Bedrosssian, Klitsner, anisotropic vacancy kinetics and single-domain stabilization on Si(100) -2 x 1. Phys. Rev. Lett. 68, 646–649 (1992)CrossRef T. Bedrosssian, Klitsner, anisotropic vacancy kinetics and single-domain stabilization on Si(100) -2 x 1. Phys. Rev. Lett. 68, 646–649 (1992)CrossRef
65.
go back to reference P. Bedrossian, Generation and healing of low-energy ion-induced defects on Si(100) -2 × 1. Surf. Sci. 301, 223–232 (1994)CrossRef P. Bedrossian, Generation and healing of low-energy ion-induced defects on Si(100) -2 × 1. Surf. Sci. 301, 223–232 (1994)CrossRef
66.
go back to reference P.J. Bedrossian, T.D. de la Rubia, Surface segregation of low-energy ion-induced defects in Si. J. Vac. Sci. Technol. A 16, 1043–1046 (1998)CrossRef P.J. Bedrossian, T.D. de la Rubia, Surface segregation of low-energy ion-induced defects in Si. J. Vac. Sci. Technol. A 16, 1043–1046 (1998)CrossRef
67.
go back to reference S.J. Chey, J.E. van Nostrand, D.G. Cahill, Surface morphology of Ge(001) during etching by law energy ions. Phys. Rev. B 52, 16696–16701 (1995)CrossRef S.J. Chey, J.E. van Nostrand, D.G. Cahill, Surface morphology of Ge(001) during etching by law energy ions. Phys. Rev. B 52, 16696–16701 (1995)CrossRef
68.
go back to reference J.A. Floro, B.K. Kellerman, E. Chason, S.T. Picraux, D.K. Brice, K.M. Horn, Surface defect production on Ge(001) during low-energy ion bombardment. J. Appl. Phys. 77, 2351–2357 (1995)CrossRef J.A. Floro, B.K. Kellerman, E. Chason, S.T. Picraux, D.K. Brice, K.M. Horn, Surface defect production on Ge(001) during low-energy ion bombardment. J. Appl. Phys. 77, 2351–2357 (1995)CrossRef
69.
go back to reference O.R. de la Fuente, M.A. Gonzalez, J.M. Rojo, Ion bombardment of reconstructed metal surfaces: from two-dimensional dislocation dipoles to vacancy pits. Phys. Rev. B 63, 085420 (2001) O.R. de la Fuente, M.A. Gonzalez, J.M. Rojo, Ion bombardment of reconstructed metal surfaces: from two-dimensional dislocation dipoles to vacancy pits. Phys. Rev. B 63, 085420 (2001)
70.
go back to reference R.P. Webb, D.E. Harrison Jr., The formation of target adatoms during the quenching of an energetic ion induced cascade in a crystalline metal surface. Rad. Eff. Defects Solids 86, 15–18 (1984) R.P. Webb, D.E. Harrison Jr., The formation of target adatoms during the quenching of an energetic ion induced cascade in a crystalline metal surface. Rad. Eff. Defects Solids 86, 15–18 (1984)
71.
go back to reference H. Gades, H.M. Urbassek, Molecular-dynamics simulation of adatom formation under keV-ion bombardment of Pt(111). Phys. Rev. B 50, 11167–11174 (1994)CrossRef H. Gades, H.M. Urbassek, Molecular-dynamics simulation of adatom formation under keV-ion bombardment of Pt(111). Phys. Rev. B 50, 11167–11174 (1994)CrossRef
72.
go back to reference M. Ghaly, K. Nordlund, R.S. Averback, Molecular dynamics investigations of surface damage produced by kiloelectronvolt self-bombardment of solids. Philos. Mag. A 79, 795–820 (1999)CrossRef M. Ghaly, K. Nordlund, R.S. Averback, Molecular dynamics investigations of surface damage produced by kiloelectronvolt self-bombardment of solids. Philos. Mag. A 79, 795–820 (1999)CrossRef
73.
go back to reference T. Michely, G. Comsa, Temperature dependence of the sputtering morphology of Pt(111). Surf. Sci. 256, 217–226 (1991)CrossRef T. Michely, G. Comsa, Temperature dependence of the sputtering morphology of Pt(111). Surf. Sci. 256, 217–226 (1991)CrossRef
74.
go back to reference M. Kalff, G. Comsa, T. Michely, Temperature dependent morphological evolution of Pt(111) by ion erosion: destabilization, phase coexistence and coursing. Surf. Sci. 486, 103–135 (2001)CrossRef M. Kalff, G. Comsa, T. Michely, Temperature dependent morphological evolution of Pt(111) by ion erosion: destabilization, phase coexistence and coursing. Surf. Sci. 486, 103–135 (2001)CrossRef
75.
go back to reference H. Ullmaier, P. Ehrhart, P. Jung, H. Schultz, Atomic defects in metals, in Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, vol. III, no. 25 (Springer, Berlin, 1991) H. Ullmaier, P. Ehrhart, P. Jung, H. Schultz, Atomic defects in metals, in Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, vol. III, no. 25 (Springer, Berlin, 1991)
76.
go back to reference K.L. Merkle, W. Jäger, Direct observation of spike effects in heavy-ion sputtering. Phil. Mag. A 44, 741–762 (1981)CrossRef K.L. Merkle, W. Jäger, Direct observation of spike effects in heavy-ion sputtering. Phil. Mag. A 44, 741–762 (1981)CrossRef
77.
go back to reference J. Nordlund, M. Keinonen, R.S. Ghaly, Averback, recoils, flows and explosions: surface damage mechanisms in metals and semiconductors during 50 eV-50 keV ion bombardment. Nucl. Instrum. Methods Phys. Res. B 148, 74–82 (1999)CrossRef J. Nordlund, M. Keinonen, R.S. Ghaly, Averback, recoils, flows and explosions: surface damage mechanisms in metals and semiconductors during 50 eV-50 keV ion bombardment. Nucl. Instrum. Methods Phys. Res. B 148, 74–82 (1999)CrossRef
78.
go back to reference E.M. Bringa, J. Keinonen, K. Nordlund, Cratering-energy regimes: from linear collison cascades to heat spikes to macroscopic impacts. Phys. Rev. B 64, 235426 (2001) E.M. Bringa, J. Keinonen, K. Nordlund, Cratering-energy regimes: from linear collison cascades to heat spikes to macroscopic impacts. Phys. Rev. B 64, 235426 (2001)
79.
go back to reference N. Kalyanasundaram, M. Ghazisaeidi, J.B. Freund, H.T. Johnson, Single impact crater function for ion bombardment of silicon. Appl. Phys. Lett. 92, 131909 (2008) N. Kalyanasundaram, M. Ghazisaeidi, J.B. Freund, H.T. Johnson, Single impact crater function for ion bombardment of silicon. Appl. Phys. Lett. 92, 131909 (2008)
80.
go back to reference N. Kalyanasundaram, J.B. Freund, H.T. Johnson, A multiscale crater function model for ion-induced pattern formation in silicon. J. Phys. Condens. Matter 21, 224018 (2009) N. Kalyanasundaram, J.B. Freund, H.T. Johnson, A multiscale crater function model for ion-induced pattern formation in silicon. J. Phys. Condens. Matter 21, 224018 (2009)
81.
go back to reference Z. Yang, M. Lively, J.P. Allain, Atomistic simulation of ion beam patterning with crater functions. Nucl. Instr. Meth. Phys. Res. B 307, 189–193 (2013)CrossRef Z. Yang, M. Lively, J.P. Allain, Atomistic simulation of ion beam patterning with crater functions. Nucl. Instr. Meth. Phys. Res. B 307, 189–193 (2013)CrossRef
82.
go back to reference M.V.R. Murty, T. Curcic, A. Judy, B.H. Cooper, A.R. Woll, J.D. Brock, S. Kycia, R.L. Headrick, X-ray scattering study of the surface morphology of Au(111) during Ar+ ion irradiation. Phys. Rev. Lett. 80, 4713–4716 (1998)CrossRef M.V.R. Murty, T. Curcic, A. Judy, B.H. Cooper, A.R. Woll, J.D. Brock, S. Kycia, R.L. Headrick, X-ray scattering study of the surface morphology of Au(111) during Ar+ ion irradiation. Phys. Rev. Lett. 80, 4713–4716 (1998)CrossRef
83.
go back to reference M.V.R. Murty, T. Curcic, A. Judy, B.H. Cooper, A.R. Woll, J.D. Brock, S. Kycia, R.L. Headrick, Real-time x-ray scattering study of surface morphology evolution during ion erosion and epitaxial growth of Au(111). Phys. Rev. B 60, 16956–16964 (1999)CrossRef M.V.R. Murty, T. Curcic, A. Judy, B.H. Cooper, A.R. Woll, J.D. Brock, S. Kycia, R.L. Headrick, Real-time x-ray scattering study of surface morphology evolution during ion erosion and epitaxial growth of Au(111). Phys. Rev. B 60, 16956–16964 (1999)CrossRef
84.
go back to reference T. Michely, K.H. Besocke, G. Comsa, Observation of sputtering damage on Au(111). Surf. Sci. Lett. 230, L135–L139 (1990)CrossRef T. Michely, K.H. Besocke, G. Comsa, Observation of sputtering damage on Au(111). Surf. Sci. Lett. 230, L135–L139 (1990)CrossRef
85.
go back to reference G. Costantini, F. Buatier de Mongeot, C. Boragno, U. Valbusa, Is ion sputtering always a “negative homoepitaxial deposition”? Phys. Rev. Lett. 86, 838–841 (2001)CrossRef G. Costantini, F. Buatier de Mongeot, C. Boragno, U. Valbusa, Is ion sputtering always a “negative homoepitaxial deposition”? Phys. Rev. Lett. 86, 838–841 (2001)CrossRef
86.
go back to reference G. Costantini, S. Rusponi, R. Gianotti, C. Boragno, U. Valbusa, Temperature evolution of nanostructures induced by Ar+ sputtering on Ag(001). Surf. Sci. 416, 245–254 (1998)CrossRef G. Costantini, S. Rusponi, R. Gianotti, C. Boragno, U. Valbusa, Temperature evolution of nanostructures induced by Ar+ sputtering on Ag(001). Surf. Sci. 416, 245–254 (1998)CrossRef
87.
go back to reference B. Poelsema, R. Kunkel, L.K. Verheij, G. Comsa, Mechanisms for annealing of ion-bombardment-induced defects on Pt(111). Phys. Rev. B 41, 11609–11611 (1990)CrossRef B. Poelsema, R. Kunkel, L.K. Verheij, G. Comsa, Mechanisms for annealing of ion-bombardment-induced defects on Pt(111). Phys. Rev. B 41, 11609–11611 (1990)CrossRef
88.
go back to reference H.J. Ernst, The pattern formation during ion bombardment of Cu(001) investigated with helium atom beam scattering. Surf. Sci. 383, L755–L759 (1997)CrossRef H.J. Ernst, The pattern formation during ion bombardment of Cu(001) investigated with helium atom beam scattering. Surf. Sci. 383, L755–L759 (1997)CrossRef
89.
go back to reference M. Ritter, M. Stindtmann, M. Farle, K. Baberschke, Nanostructuring of the Cu(001) surface by ion bombardment: a STM study. Surf. Sci. 348, 243–252 (1996)CrossRef M. Ritter, M. Stindtmann, M. Farle, K. Baberschke, Nanostructuring of the Cu(001) surface by ion bombardment: a STM study. Surf. Sci. 348, 243–252 (1996)CrossRef
90.
go back to reference J. Naumann, J. Osing, A.J. Osing, I.V. Shvets, Morphology of sputtering damage on Cu(111) studied by scanning tunneling microscopy. Surf. Sci. 388, 212–219 (1997)CrossRef J. Naumann, J. Osing, A.J. Osing, I.V. Shvets, Morphology of sputtering damage on Cu(111) studied by scanning tunneling microscopy. Surf. Sci. 388, 212–219 (1997)CrossRef
91.
go back to reference J.R. Hahn, H. Kang, STM study of Ar+-induced defects produced by near-threshold energy collision. Surf. Sci. 357–358, 165–169 (1996)CrossRef J.R. Hahn, H. Kang, STM study of Ar+-induced defects produced by near-threshold energy collision. Surf. Sci. 357–358, 165–169 (1996)CrossRef
92.
go back to reference R.M. Feenstra, G.S. Oehrlein, Surface morphology of oxidized and ion-etched silicon by scanning tunneling microscopy. App. Phys. Lett. 47, 97–99 (1985)CrossRef R.M. Feenstra, G.S. Oehrlein, Surface morphology of oxidized and ion-etched silicon by scanning tunneling microscopy. App. Phys. Lett. 47, 97–99 (1985)CrossRef
93.
go back to reference T. Michely, M. Kalff, G. Comsa, M. Strobel, K.-H. Heinig, Coarsening mechanisms in surface morphological evolution, in Atomic Aspects of Epitaxial Growth. ed. by M. Kotrla, N.I. Papanicolaou, D.D. Vvedensky, L.T. Wille (Springer, Dordrecht, 2002), pp. 185–196CrossRef T. Michely, M. Kalff, G. Comsa, M. Strobel, K.-H. Heinig, Coarsening mechanisms in surface morphological evolution, in Atomic Aspects of Epitaxial Growth. ed. by M. Kotrla, N.I. Papanicolaou, D.D. Vvedensky, L.T. Wille (Springer, Dordrecht, 2002), pp. 185–196CrossRef
94.
go back to reference M. Strobel, K.-H. Heinig, T. Michely, Mechanisms of pit coarsening in ion erosion of fcc(111) surfaces: a kinetic 3D lattice Monte-Carlo study. Surf. Sci. 486, 136–156 (2001)CrossRef M. Strobel, K.-H. Heinig, T. Michely, Mechanisms of pit coarsening in ion erosion of fcc(111) surfaces: a kinetic 3D lattice Monte-Carlo study. Surf. Sci. 486, 136–156 (2001)CrossRef
95.
go back to reference G. Carter, B. Navinsek, J.L. Whitton, Heavy ion sputtering induced surface topography development, in Sputtering by Particle Bombardment II, ed. by R. Behrisch. Topics in Applied Physics, vol. 52 (Springer, Berlin, 1983), pp. 231–269 G. Carter, B. Navinsek, J.L. Whitton, Heavy ion sputtering induced surface topography development, in Sputtering by Particle Bombardment II, ed. by R. Behrisch. Topics in Applied Physics, vol. 52 (Springer, Berlin, 1983), pp. 231–269
96.
go back to reference B. Navinsek, Sputtering—surface changes induced by ion bombardment. Prog. Surf. Sci. 7, 49–70 (1976)CrossRef B. Navinsek, Sputtering—surface changes induced by ion bombardment. Prog. Surf. Sci. 7, 49–70 (1976)CrossRef
97.
go back to reference A. Güntherschulze, W. Tollmien, Neue Untersuchungen über Kathodenzerstäubung der Glimmentladung. V. Die Oberflächenbeschaffenheit der Kathode, Z. Physik 119, 685–695 (1942) A. Güntherschulze, W. Tollmien, Neue Untersuchungen über Kathodenzerstäubung der Glimmentladung. V. Die Oberflächenbeschaffenheit der Kathode, Z. Physik 119, 685–695 (1942)
98.
go back to reference A.D.G. Stewart, M.W. Thompson, Microtopography of surfaces eroded by ion bombardment. J. Mater. Sci. 4, 56–60 (1969)CrossRef A.D.G. Stewart, M.W. Thompson, Microtopography of surfaces eroded by ion bombardment. J. Mater. Sci. 4, 56–60 (1969)CrossRef
99.
go back to reference G.K. Wehner, D.J. Hajicek, Cone formation on metal targets during sputtering. J. Appl. Phys. 42, 1145–1149 (1971)CrossRef G.K. Wehner, D.J. Hajicek, Cone formation on metal targets during sputtering. J. Appl. Phys. 42, 1145–1149 (1971)CrossRef
100.
go back to reference I.H. Wilson, M.W. Kidd, A study of cones developed by ion-bombardment of gold. J. Mat. Sci. 6, 1362–1366 (1971)CrossRef I.H. Wilson, M.W. Kidd, A study of cones developed by ion-bombardment of gold. J. Mat. Sci. 6, 1362–1366 (1971)CrossRef
101.
go back to reference R.S. Gvosdover, V.M. Efremenkova, L.B. Shelyakin, V.E. Wrasova, Formation of cones during sputtering. Rad. Eff. 27, 237–244 (1976)CrossRef R.S. Gvosdover, V.M. Efremenkova, L.B. Shelyakin, V.E. Wrasova, Formation of cones during sputtering. Rad. Eff. 27, 237–244 (1976)CrossRef
102.
go back to reference J.L. Whitton, L. Tanovic, J.S. Williams, The production of regular pyramids on argon ion bombarded surfaces of cupper crystals. Appl. Surf. Sci. 1, 408–413 (1978)CrossRef J.L. Whitton, L. Tanovic, J.S. Williams, The production of regular pyramids on argon ion bombarded surfaces of cupper crystals. Appl. Surf. Sci. 1, 408–413 (1978)CrossRef
103.
go back to reference G.K. Wehner, Whiskers, cones and pyramids created in sputtering by ion bombardment. Report NASA CR-159549 (1979) G.K. Wehner, Whiskers, cones and pyramids created in sputtering by ion bombardment. Report NASA CR-159549 (1979)
104.
go back to reference G.K. Wehner, Cone formation as a result of whisker growth on ion bombarded metal surfaces. J.Vac. Sci. Technol. A 3, 1821–1835 (1985) G.K. Wehner, Cone formation as a result of whisker growth on ion bombarded metal surfaces. J.Vac. Sci. Technol. A 3, 1821–1835 (1985)
105.
go back to reference S.M. Rossnagel, R.S. Robinson, The time development of impurity-generated sputter cones on copper. Rad. Eff. 58, 11–16 (1981)CrossRef S.M. Rossnagel, R.S. Robinson, The time development of impurity-generated sputter cones on copper. Rad. Eff. 58, 11–16 (1981)CrossRef
106.
go back to reference S.M. Rossnagel, R.S. Robinson, Surface diffusion activation energy determination using ion beam microtexturing. J. Vac. Sci. Technol. 20, 195–198 (1982)CrossRef S.M. Rossnagel, R.S. Robinson, Surface diffusion activation energy determination using ion beam microtexturing. J. Vac. Sci. Technol. 20, 195–198 (1982)CrossRef
107.
go back to reference K. Goto, K. Suzuki, Dynamic observation of cone formation on Cu by ion sputtering. Nucl. Instr. Meth. Phys. Res. B 33, 569–573 (1988)CrossRef K. Goto, K. Suzuki, Dynamic observation of cone formation on Cu by ion sputtering. Nucl. Instr. Meth. Phys. Res. B 33, 569–573 (1988)CrossRef
108.
go back to reference A.K. Sen, D. Ghose, Ar+-ion sputtering-induced surface topography development on aluminium. J. Mater. Sci. 28, 1525–1531 (1993)CrossRef A.K. Sen, D. Ghose, Ar+-ion sputtering-induced surface topography development on aluminium. J. Mater. Sci. 28, 1525–1531 (1993)CrossRef
109.
go back to reference I.H. Wilson, The topography of sputtered semiconductors. Rad. Eff. 18, 95–103 (1973)CrossRef I.H. Wilson, The topography of sputtered semiconductors. Rad. Eff. 18, 95–103 (1973)CrossRef
110.
go back to reference D.J. Barber, F.C. Frank, M. Moss, J.-W. Steeds, I.S.T. Tsong, Prediction of ion bombarded surface topographies using Frank’s kinematic theory of crystal dissolution. J. Mater. Sci. 8, 1030–1040 (1973)CrossRef D.J. Barber, F.C. Frank, M. Moss, J.-W. Steeds, I.S.T. Tsong, Prediction of ion bombarded surface topographies using Frank’s kinematic theory of crystal dissolution. J. Mater. Sci. 8, 1030–1040 (1973)CrossRef
111.
go back to reference M. Nozu, M. Tanemura, F. Okuyama, Direct evidence for In-crystallite growth on sputter-induced InP cones. Surf. Sci. Lett. 304, L468–L474 (1994) M. Nozu, M. Tanemura, F. Okuyama, Direct evidence for In-crystallite growth on sputter-induced InP cones. Surf. Sci. Lett. 304, L468–L474 (1994)
112.
go back to reference F.Y. Meng, W.K. Wong, N.G. Shang, Q. Li, I. Bello, Multi-tip cones induced by ion-bombardment. Vacuum 66, 71–76 (2002)CrossRef F.Y. Meng, W.K. Wong, N.G. Shang, Q. Li, I. Bello, Multi-tip cones induced by ion-bombardment. Vacuum 66, 71–76 (2002)CrossRef
113.
go back to reference M.J. Witcomb, The development of ion-bombardment surface structures on stainless steel. J. Mat. Sci. 9, 551–563 (1974)CrossRef M.J. Witcomb, The development of ion-bombardment surface structures on stainless steel. J. Mat. Sci. 9, 551–563 (1974)CrossRef
114.
go back to reference M.Z. Yusop, K. Yamaguchi, T. Suzuki, P. Ghosh, A. Hayashi, Y. Hayashi, M. Tanemura, Morphology and size of ion induced carbon nanofibers: effect of ion incidence angle, sputtering rate, and temperature. Jap. J. Appl. Phys. 50, 01AF1 (2011) M.Z. Yusop, K. Yamaguchi, T. Suzuki, P. Ghosh, A. Hayashi, Y. Hayashi, M. Tanemura, Morphology and size of ion induced carbon nanofibers: effect of ion incidence angle, sputtering rate, and temperature. Jap. J. Appl. Phys. 50, 01AF1 (2011)
115.
go back to reference J.A. Floro, S.M. Rossnagel, R.S. Robinson, Ion-bombardment-induced whisker formation on graphite. J. Vac. Sci. Technol. A 1, 1398–1402 (1983) J.A. Floro, S.M. Rossnagel, R.S. Robinson, Ion-bombardment-induced whisker formation on graphite. J. Vac. Sci. Technol. A 1, 1398–1402 (1983)
116.
go back to reference A.C. Popa, G.E. Stan, C. Besleaga, L. Ion, V.A. Maraloiu, D.U. Tulyaganov, J.M.F. Ferreira, Submicrometer hollow bioglass cones deposited by radio frequency magnetron sputtering: formation mechanism, properties, and prospective biomedical applications. ACS Appl. Mater. Interfaces 8, 4357–4367 (2018)CrossRef A.C. Popa, G.E. Stan, C. Besleaga, L. Ion, V.A. Maraloiu, D.U. Tulyaganov, J.M.F. Ferreira, Submicrometer hollow bioglass cones deposited by radio frequency magnetron sputtering: formation mechanism, properties, and prospective biomedical applications. ACS Appl. Mater. Interfaces 8, 4357–4367 (2018)CrossRef
117.
go back to reference H.R. Kaufman, R.S. Robinson, Ion beam texturing of surfaces. J. Vac. Sci. Technol. 16, 175–178 (1979)CrossRef H.R. Kaufman, R.S. Robinson, Ion beam texturing of surfaces. J. Vac. Sci. Technol. 16, 175–178 (1979)CrossRef
118.
go back to reference S.M. Rossnagel, R.S. Robinson, Ion beam-induced topography and surface diffusion. J. Vac. Sci. Technol. 21, 790–797 (1982)CrossRef S.M. Rossnagel, R.S. Robinson, Ion beam-induced topography and surface diffusion. J. Vac. Sci. Technol. 21, 790–797 (1982)CrossRef
119.
go back to reference L.B. Begrambekov, A.M. Zakharov, V.G. Telkovsky, Peculiarities and mechanism of the cone growth under ion bombardment. Nucl. Instr. Meth. Phys. Res. B 115, 456–460 (1996)CrossRef L.B. Begrambekov, A.M. Zakharov, V.G. Telkovsky, Peculiarities and mechanism of the cone growth under ion bombardment. Nucl. Instr. Meth. Phys. Res. B 115, 456–460 (1996)CrossRef
120.
go back to reference R. Reiche, W. Hauffe, Pyramid formation on a high index copper bicrystal during bombardment with 10 keV argon and krypton ions. Appl. Surf. Sci. 165, 279–287 (2000) R. Reiche, W. Hauffe, Pyramid formation on a high index copper bicrystal during bombardment with 10 keV argon and krypton ions. Appl. Surf. Sci. 165, 279–287 (2000)
121.
go back to reference P. Sigmund, A mechanism of surface micro-roughening by ion bombardment. J. Mater. Sci. 8, 1545–1553 (1973)CrossRef P. Sigmund, A mechanism of surface micro-roughening by ion bombardment. J. Mater. Sci. 8, 1545–1553 (1973)CrossRef
122.
go back to reference A.R. Bayly, Secondary processes in the evolution of sputter-topographies. J. Mater. Sci. 7, 404–412 (1972)CrossRef A.R. Bayly, Secondary processes in the evolution of sputter-topographies. J. Mater. Sci. 7, 404–412 (1972)CrossRef
123.
go back to reference Y. Yuba, S. Hazama, K. Gamo, Nanostructure fabrication of InP by low energy ion beams. Nucl. Instr. Meth. B 206, 648–652 (2003)CrossRef Y. Yuba, S. Hazama, K. Gamo, Nanostructure fabrication of InP by low energy ion beams. Nucl. Instr. Meth. B 206, 648–652 (2003)CrossRef
124.
go back to reference I.S. Nerbø, M. Kildemo, S. Le Roy, I. Simonsen, E. Søndergård, L. Holt, J.C. Walmsley, Characterization of nanostructured GaSb: comparison between large-area optical and local direct microscopic techniques. Appl. Opt. 47, 5130–5139 (2008)CrossRef I.S. Nerbø, M. Kildemo, S. Le Roy, I. Simonsen, E. Søndergård, L. Holt, J.C. Walmsley, Characterization of nanostructured GaSb: comparison between large-area optical and local direct microscopic techniques. Appl. Opt. 47, 5130–5139 (2008)CrossRef
125.
go back to reference E. Trynkiewicz, B.R. Jany, D. Wrana, F. Krok, Thermally controlled growth of surface nanostructures on ion-modified AIII-BV semiconductor crystals. Appl. Surf. Sci. 427, 349–356 (2018)CrossRef E. Trynkiewicz, B.R. Jany, D. Wrana, F. Krok, Thermally controlled growth of surface nanostructures on ion-modified AIII-BV semiconductor crystals. Appl. Surf. Sci. 427, 349–356 (2018)CrossRef
126.
go back to reference E. Trynkiewicz, B.R. Jany, A. Janas, F. Krok, Recent developments in ion beam-induced nanostructures on AIII-BV compound semiconductors. J. Condens. Matter 30, 304005 (2018) E. Trynkiewicz, B.R. Jany, A. Janas, F. Krok, Recent developments in ion beam-induced nanostructures on AIII-BV compound semiconductors. J. Condens. Matter 30, 304005 (2018)
127.
go back to reference M. Kang, J.H. Wu, W. Ye, Y. Jiang, E.A. Robb, C. Chen, R.S. Goldman, Formation and evolution of ripples on ion irradiated semiconductor surfaces. Appl. Phys. Lett. 104, 052103 (2014) M. Kang, J.H. Wu, W. Ye, Y. Jiang, E.A. Robb, C. Chen, R.S. Goldman, Formation and evolution of ripples on ion irradiated semiconductor surfaces. Appl. Phys. Lett. 104, 052103 (2014)
128.
go back to reference S. Le Roy, E. Barthel, N. Brun, A. Lelarge, E. Søndergård, Self-sustained etch masking: a general concept to initiate the formation of nanopatterns during ion erosion. J. Appl. Phys. 106, 094308 (2009) S. Le Roy, E. Barthel, N. Brun, A. Lelarge, E. Søndergård, Self-sustained etch masking: a general concept to initiate the formation of nanopatterns during ion erosion. J. Appl. Phys. 106, 094308 (2009)
129.
go back to reference S. Le Roy, E. Søndergård, M. Kildemo, I.S. Nerbø, M. Plapp, Diffuse-interface model for nanopatterning induced by self-sustained ion-etch masking. Phys. Rev. B 81, 161401 (2010) S. Le Roy, E. Søndergård, M. Kildemo, I.S. Nerbø, M. Plapp, Diffuse-interface model for nanopatterning induced by self-sustained ion-etch masking. Phys. Rev. B 81, 161401 (2010)
130.
go back to reference J.H. Wu, R.S. Goldman, Mechanisms of nanorod growth on focused ion beam-irradiated semiconductor surfaces: role of redeposition. Appl. Phys. Lett. 100, 053103 (2012) J.H. Wu, R.S. Goldman, Mechanisms of nanorod growth on focused ion beam-irradiated semiconductor surfaces: role of redeposition. Appl. Phys. Lett. 100, 053103 (2012)
131.
go back to reference L. Tanovic, N. Tanovic, G. Carter, M.J. Nobes, C. Cave, N. Al-Quadi, Further studies of topography evolution on ion bombardment 1131 copper. Vacuum 45, 929–935 (1994)CrossRef L. Tanovic, N. Tanovic, G. Carter, M.J. Nobes, C. Cave, N. Al-Quadi, Further studies of topography evolution on ion bombardment 1131 copper. Vacuum 45, 929–935 (1994)CrossRef
132.
go back to reference Y.-J. Zhu, A. Schnieders, J.D. Alexander, T.P. Beebe, Properties of gold nanostructures on highly oriented pyrolytic graphite. Langmuir 18, 5728–5733 (2002)CrossRef Y.-J. Zhu, A. Schnieders, J.D. Alexander, T.P. Beebe, Properties of gold nanostructures on highly oriented pyrolytic graphite. Langmuir 18, 5728–5733 (2002)CrossRef
133.
go back to reference G. Carter, M.J. Nobes, F. Paton, J.S. Williams, J.L. Whitton, Ion bombardment induced ripple topography on amorphous solids. Rad. Eff. 33, 65–73 (1977)CrossRef G. Carter, M.J. Nobes, F. Paton, J.S. Williams, J.L. Whitton, Ion bombardment induced ripple topography on amorphous solids. Rad. Eff. 33, 65–73 (1977)CrossRef
134.
go back to reference G. Carter, G.W. Lewis, M.J. Nobes, J. Cox, W. Begemann, The effect of ion species on bombardment induced topography during ion etching of silicon. Vacuum 34, 445–450 (1984)CrossRef G. Carter, G.W. Lewis, M.J. Nobes, J. Cox, W. Begemann, The effect of ion species on bombardment induced topography during ion etching of silicon. Vacuum 34, 445–450 (1984)CrossRef
135.
go back to reference S.J. Chey, D.G. Cahill, Surface defects created by low energy (20<E<240 eV) ion bombardment of Ge(001). Surf. Sci. 380, 377–384 (1997)CrossRef S.J. Chey, D.G. Cahill, Surface defects created by low energy (20<E<240 eV) ion bombardment of Ge(001). Surf. Sci. 380, 377–384 (1997)CrossRef
136.
go back to reference G. Carter, I.V. Katardjiev, M.J. Nobes, J.L. Whitton, Sputtering-induced surface topography on F.C.C. metals. Mater. Sci. Eng. 90, 21–32 (1987) G. Carter, I.V. Katardjiev, M.J. Nobes, J.L. Whitton, Sputtering-induced surface topography on F.C.C. metals. Mater. Sci. Eng. 90, 21–32 (1987)
137.
go back to reference L. Tanovic, N. Perovic, The surface microtopography induced by ion bombardment on Cu single crystals. Nucl. Instr. Meth. 132, 393–3396 (1976)CrossRef L. Tanovic, N. Perovic, The surface microtopography induced by ion bombardment on Cu single crystals. Nucl. Instr. Meth. 132, 393–3396 (1976)CrossRef
138.
go back to reference G. Carter, I.V. Katardijev, M.J. Nobes, J.L. Whitton, Topography evolution in atomic scale growth and erosion continuum. Scan. Microsc. 2, 1293–1327 (1988) G. Carter, I.V. Katardijev, M.J. Nobes, J.L. Whitton, Topography evolution in atomic scale growth and erosion continuum. Scan. Microsc. 2, 1293–1327 (1988)
139.
go back to reference R.L. Cunningham, P. Haymann, C. Lecomte, W.J. Moore, J.T. Trillat, Etching of surfaces with 8-keV argon ions. J. Appl. Phys. 31, 839–842 (1960) R.L. Cunningham, P. Haymann, C. Lecomte, W.J. Moore, J.T. Trillat, Etching of surfaces with 8-keV argon ions. J. Appl. Phys. 31, 839–842 (1960)
140.
go back to reference G.D. Magnuson, B.B. Meckel, P.A. Harkins, Etch effects from oblique-incidence ion bombardment. J. Appl. Phys. 32, 369–374 (1991)CrossRef G.D. Magnuson, B.B. Meckel, P.A. Harkins, Etch effects from oblique-incidence ion bombardment. J. Appl. Phys. 32, 369–374 (1991)CrossRef
141.
go back to reference R.S. Nelson, D.J. Mazey, Surface damage and topography changes produced during sputtering, in Ion Surface Interaction, Sputtering, and Related Phenomena, ed. by R. Behrisch, W. Heiland, W. Poschenrieder, P. Staib, H. Verbeek (Gordon and Breach, London, 1973), pp. 199–206 R.S. Nelson, D.J. Mazey, Surface damage and topography changes produced during sputtering, in Ion Surface Interaction, Sputtering, and Related Phenomena, ed. by R. Behrisch, W. Heiland, W. Poschenrieder, P. Staib, H. Verbeek (Gordon and Breach, London, 1973), pp. 199–206
142.
go back to reference M. Teichmann, Musterbildung auf Si- und Ge-Oberflächen durch niederenegetische Ionenstrahlerosion, Dissertation, University Leipzig (2014) M. Teichmann, Musterbildung auf Si- und Ge-Oberflächen durch niederenegetische Ionenstrahlerosion, Dissertation, University Leipzig (2014)
143.
go back to reference T. Mohohiro, Y. Taga, Characteristic erosion of silica by oblique argon ion beam bombardment. Thin Solid Films 147, 153–165 (1987)CrossRef T. Mohohiro, Y. Taga, Characteristic erosion of silica by oblique argon ion beam bombardment. Thin Solid Films 147, 153–165 (1987)CrossRef
144.
go back to reference I.H. Wilson, The topography of ion-bombarded surfaces, in Materials Modification by High-Fluence Ion Beams. ed. by R. Kelly, M. Fernanda da Silva (Kluwer, Dordrecht, 1989), pp. 421–466CrossRef I.H. Wilson, The topography of ion-bombarded surfaces, in Materials Modification by High-Fluence Ion Beams. ed. by R. Kelly, M. Fernanda da Silva (Kluwer, Dordrecht, 1989), pp. 421–466CrossRef
145.
go back to reference G.J. Ogilvie, Surface structure of silver crystals after argon-ion bombardment. J. Phys. Chem. Solids 10, 222–228 (1959) G.J. Ogilvie, Surface structure of silver crystals after argon-ion bombardment. J. Phys. Chem. Solids 10, 222–228 (1959)
146.
go back to reference M. Balarin, F. Hilbert, Die Einwirkung energiereicher Ionen auf Metalloberflächen. J. Phys. Chem. Solids 20, 138–145 (1961)CrossRef M. Balarin, F. Hilbert, Die Einwirkung energiereicher Ionen auf Metalloberflächen. J. Phys. Chem. Solids 20, 138–145 (1961)CrossRef
147.
go back to reference G. Carter, The physics and applications of ion beam erosion. J. Phys. D Appl. Phys. 34, R1–R22 (2001)CrossRef G. Carter, The physics and applications of ion beam erosion. J. Phys. D Appl. Phys. 34, R1–R22 (2001)CrossRef
148.
go back to reference G.W. Lewis, M.J. Nobes, G. Carter, J.L. Whitton, The mechanisms of etch pit and ripple structure formation on ion bombarded Si and other amorphous solids. Nucl. Instr. Meth. 170, 363–369 (1980)CrossRef G.W. Lewis, M.J. Nobes, G. Carter, J.L. Whitton, The mechanisms of etch pit and ripple structure formation on ion bombarded Si and other amorphous solids. Nucl. Instr. Meth. 170, 363–369 (1980)CrossRef
149.
go back to reference G. Carter, M.J. Nobes, G.W. Lewis, C.R. Brown, The effect of surface topography evolution on sputter profiling depth resolution in Si. Surf. Interf. Anal. 7, 35–40 (1985)CrossRef G. Carter, M.J. Nobes, G.W. Lewis, C.R. Brown, The effect of surface topography evolution on sputter profiling depth resolution in Si. Surf. Interf. Anal. 7, 35–40 (1985)CrossRef
150.
go back to reference M. Teichmann, J. Lorbeer, B. Ziberi, F. Frost, B. Rauschenbach, Pattern formation on Ge by low energy ion beam erosion. New J. Phys. 15, 103029 (2013) M. Teichmann, J. Lorbeer, B. Ziberi, F. Frost, B. Rauschenbach, Pattern formation on Ge by low energy ion beam erosion. New J. Phys. 15, 103029 (2013)
151.
go back to reference J. Völlner, B. Ziberi, F. Frost, B. Rauschenbach, Topography evolution mechanism on fused silica during low-energy ion beam sputtering. J. Appl. Phys. 109, 043501 (2011) J. Völlner, B. Ziberi, F. Frost, B. Rauschenbach, Topography evolution mechanism on fused silica during low-energy ion beam sputtering. J. Appl. Phys. 109, 043501 (2011)
152.
go back to reference T. Basu, D.P. Datta, Z. Som, Transition from ripples to faceted structures under low-energy argon ion bombardment of silicon: understanding the role of shadowing and sputtering. Nanoscale Res. Lett. 8, 289 (2013) T. Basu, D.P. Datta, Z. Som, Transition from ripples to faceted structures under low-energy argon ion bombardment of silicon: understanding the role of shadowing and sputtering. Nanoscale Res. Lett. 8, 289 (2013)
153.
go back to reference G. Carter, V. Vishnyakov, Ne+ and Ar+ bombardment-induced topography on Si. Surf. Interface Anal. 23, 514–520 (1995)CrossRef G. Carter, V. Vishnyakov, Ne+ and Ar+ bombardment-induced topography on Si. Surf. Interface Anal. 23, 514–520 (1995)CrossRef
154.
go back to reference G. Carter, The effects of surface ripples on sputtering erosion rates and secondary ion emission yields. J. Appl. Phys. 85, 455–459 (1999)CrossRef G. Carter, The effects of surface ripples on sputtering erosion rates and secondary ion emission yields. J. Appl. Phys. 85, 455–459 (1999)CrossRef
155.
go back to reference K. Wittmaarck, Effect of surface roughening on secondary ion yields and erosion rates of silicon subject to oblique oxygen bombardment. J. Vac. Sci. Technol. A 8, 2246–2250 (1990)CrossRef K. Wittmaarck, Effect of surface roughening on secondary ion yields and erosion rates of silicon subject to oblique oxygen bombardment. J. Vac. Sci. Technol. A 8, 2246–2250 (1990)CrossRef
156.
go back to reference M.A. Makeev, A.-L. Barabasi, Secondary ion yield changes on rippled interfaces. Appl. Phys. Lett. 72, 906–908 (1998)CrossRef M.A. Makeev, A.-L. Barabasi, Secondary ion yield changes on rippled interfaces. Appl. Phys. Lett. 72, 906–908 (1998)CrossRef
157.
go back to reference W. Hauffe, Faceting mechanism in the sputtering process. Phys. Stat. Sol. (A) 35, K93–K96 (1976) W. Hauffe, Faceting mechanism in the sputtering process. Phys. Stat. Sol. (A) 35, K93–K96 (1976)
158.
go back to reference G. Carter, M.J. Nobes, I. Abril, R. Garcia-Molina, Facet development and its influence on depth resolution during sputtering of Si. Surf. Interface Anal. 7, 41–48 (1985)CrossRef G. Carter, M.J. Nobes, I. Abril, R. Garcia-Molina, Facet development and its influence on depth resolution during sputtering of Si. Surf. Interface Anal. 7, 41–48 (1985)CrossRef
159.
go back to reference M. Teichmann, J. Lorbeer, F. Frost, B. Rauschenbach, Ripple coarsening on ion beam-eroded surfaces. Nanoscale Res. Lett. 9, 439–446 (2014)CrossRef M. Teichmann, J. Lorbeer, F. Frost, B. Rauschenbach, Ripple coarsening on ion beam-eroded surfaces. Nanoscale Res. Lett. 9, 439–446 (2014)CrossRef
160.
go back to reference M. Engler, S. Macko, F. Frost, T. Michely, Evolution of ion beam-induced patterns on Si(001). Phys. Rev. B 89, 245412 (2014) M. Engler, S. Macko, F. Frost, T. Michely, Evolution of ion beam-induced patterns on Si(001). Phys. Rev. B 89, 245412 (2014)
161.
go back to reference M.J. Nobes, J.S. Colligon, G. Carter, The equilibrium topography of sputtered amorphous solids. J. Mater. Sci. 4, 730–733 (1969) M.J. Nobes, J.S. Colligon, G. Carter, The equilibrium topography of sputtered amorphous solids. J. Mater. Sci. 4, 730–733 (1969)
162.
go back to reference L.F. Johnson, Evolution of grating profiles under ion beam erosion. Appl. Opt. 18, 2559–2574 (1979)CrossRef L.F. Johnson, Evolution of grating profiles under ion beam erosion. Appl. Opt. 18, 2559–2574 (1979)CrossRef
163.
go back to reference D. Chowdhury, D. Ghose, Super-roughening scaling behaviour of Si surface morphology at grazing incidence low energy ion beam sputtering. Appl. Surf. Sci. 324, 517–524 (2015)CrossRef D. Chowdhury, D. Ghose, Super-roughening scaling behaviour of Si surface morphology at grazing incidence low energy ion beam sputtering. Appl. Surf. Sci. 324, 517–524 (2015)CrossRef
164.
go back to reference R.S. Nelson, D.J. Mazey, Surface damage and topography changes produced by sputtering. Rad. Eff. 18, 127–134 (1973)CrossRef R.S. Nelson, D.J. Mazey, Surface damage and topography changes produced by sputtering. Rad. Eff. 18, 127–134 (1973)CrossRef
165.
go back to reference F. Vasiliu, I.A. Teodorescu, F. Glodeanu, SEM investigations of iron surface ion erosion as a function of specimen temperature and incidence angle. J. Mater. Sci. 10, 399–405 (1975) F. Vasiliu, I.A. Teodorescu, F. Glodeanu, SEM investigations of iron surface ion erosion as a function of specimen temperature and incidence angle. J. Mater. Sci. 10, 399–405 (1975)
166.
go back to reference A. Barna, P.B. Barna, Analysis of the development of large area surface topography during ion etching. Vacuum 40, 115–120 (1990)CrossRef A. Barna, P.B. Barna, Analysis of the development of large area surface topography during ion etching. Vacuum 40, 115–120 (1990)CrossRef
167.
go back to reference D. Manova, M. Schreck, S. Mändl, B. Stritzker, B. Rauschenbach, Orientation dependent sputter yield of aluminium. Surf. Coat. Technol. 151–152, 72–75 (2002)CrossRef D. Manova, M. Schreck, S. Mändl, B. Stritzker, B. Rauschenbach, Orientation dependent sputter yield of aluminium. Surf. Coat. Technol. 151–152, 72–75 (2002)CrossRef
168.
go back to reference B.Š Batič, M. Jenko, Orientation-dependent ion beam sputtering at normal incidence conditions in FeSiAl alloy. J. Vac. Sci. Technol. A 28, 741–744 (2010)CrossRef B.Š Batič, M. Jenko, Orientation-dependent ion beam sputtering at normal incidence conditions in FeSiAl alloy. J. Vac. Sci. Technol. A 28, 741–744 (2010)CrossRef
169.
170.
go back to reference G. Carter, J.S. Colligon, M.J. Nobes, The equilibrium topography of sputtered amorphous solids II. J. Mater. Sci. 6, 115–117 (1971) G. Carter, J.S. Colligon, M.J. Nobes, The equilibrium topography of sputtered amorphous solids II. J. Mater. Sci. 6, 115–117 (1971)
171.
go back to reference F.C. Frank, Growth and Perfection of Crystals (Wiley, New York, 1958) and F.C. Frank, On the kinematic theory of crystal growth and dissolution processes II. Z. Phys. Chem. 77, 84–92 (1972) F.C. Frank, Growth and Perfection of Crystals (Wiley, New York, 1958) and F.C. Frank, On the kinematic theory of crystal growth and dissolution processes II. Z. Phys. Chem. 77, 84–92 (1972)
172.
go back to reference J.P. Ducommun, M. Cantagel, M. Marchal, Development of a general surface contour by ion erosion. Theory and computer simulation. J. Mater. Sci. 9, 725–736 (1974) J.P. Ducommun, M. Cantagel, M. Marchal, Development of a general surface contour by ion erosion. Theory and computer simulation. J. Mater. Sci. 9, 725–736 (1974)
173.
go back to reference G.M. McCracken, The behaviour of surfaces under ion bombardment. Rep. Prog. Phys. 38, 241–327 (1975)CrossRef G.M. McCracken, The behaviour of surfaces under ion bombardment. Rep. Prog. Phys. 38, 241–327 (1975)CrossRef
174.
go back to reference E. Zauderer, Partial Differential Equations of Applied Mathematics (Wiley-Interscience, New York, 1989) E. Zauderer, Partial Differential Equations of Applied Mathematics (Wiley-Interscience, New York, 1989)
175.
go back to reference R. Smith, G. Carter, M.J. Nobes, The theory of surface erosion by ion bombardment. Proc. Roy. Soc. Lond. A 407, 405–433 (1986) R. Smith, G. Carter, M.J. Nobes, The theory of surface erosion by ion bombardment. Proc. Roy. Soc. Lond. A 407, 405–433 (1986)
176.
go back to reference G. Carter, M.J. Nobes, I.V. Katardjiev, J.L. Whitton, The role of bombardment induced defects in initiation of topography on ion bombarded f.c.c. metals. Defect Diff. Forum 57–58, 97–126 (1988) G. Carter, M.J. Nobes, I.V. Katardjiev, J.L. Whitton, The role of bombardment induced defects in initiation of topography on ion bombarded f.c.c. metals. Defect Diff. Forum 57–58, 97–126 (1988)
177.
go back to reference I.V. Katardjiev, G. Garter, N.J. Nobes, A fundamental approach to surface evolution during growth and erosion. Vacuum 39, 1069–1075 (1989)CrossRef I.V. Katardjiev, G. Garter, N.J. Nobes, A fundamental approach to surface evolution during growth and erosion. Vacuum 39, 1069–1075 (1989)CrossRef
178.
go back to reference I.V. Katardjiev, G. Garter, N.J. Nobes, The application of the Huygens principle to surface evolution in inhomogeneous, anisotropic and time dependent systems. J. Phys. D Appl. Phys. 22, 1813–1824 (1989)CrossRef I.V. Katardjiev, G. Garter, N.J. Nobes, The application of the Huygens principle to surface evolution in inhomogeneous, anisotropic and time dependent systems. J. Phys. D Appl. Phys. 22, 1813–1824 (1989)CrossRef
179.
go back to reference R. Smith, J.M. Walls, The development of a general three-dimensional surface under ion bombardment. Phil. Mag. A 42, 235–248 (1980)CrossRef R. Smith, J.M. Walls, The development of a general three-dimensional surface under ion bombardment. Phil. Mag. A 42, 235–248 (1980)CrossRef
180.
go back to reference R. Smith, T.P. Valkering, J.M. Walls, The erosion of amorphous and crystalline surfaces by ion bombardment. Phil. Mag. A 44, 879–893 (1981)CrossRef R. Smith, T.P. Valkering, J.M. Walls, The erosion of amorphous and crystalline surfaces by ion bombardment. Phil. Mag. A 44, 879–893 (1981)CrossRef
181.
go back to reference I.V. Katardjiev, G. Garter, N.J. Nobes, Modelling of surface evolution during growth and erosion. Int. J. Numer. Model. Electr. Netw. Devices Fields 3, 137–155 (1990) I.V. Katardjiev, G. Garter, N.J. Nobes, Modelling of surface evolution during growth and erosion. Int. J. Numer. Model. Electr. Netw. Devices Fields 3, 137–155 (1990)
182.
go back to reference H. Oechsner, Untersuchungen zur Festkörperzerstäubung bei schiefwinkligem Ionenbeschuß polykristalliner Metalloberflächen im Energiebereich um 1 keV. Z. Physik 261, 37–58 (1973)CrossRef H. Oechsner, Untersuchungen zur Festkörperzerstäubung bei schiefwinkligem Ionenbeschuß polykristalliner Metalloberflächen im Energiebereich um 1 keV. Z. Physik 261, 37–58 (1973)CrossRef
183.
go back to reference G. Carter, J.S. Colligon, M.J. Nobes, The growth of topography during sputtering of amorphous solids. J. Mater. Sci. 8, 1473–1481 (1973)CrossRef G. Carter, J.S. Colligon, M.J. Nobes, The growth of topography during sputtering of amorphous solids. J. Mater. Sci. 8, 1473–1481 (1973)CrossRef
184.
go back to reference G.B. Whitham, Linear and Non-linear Waves (Wiley, New York, 1974) G.B. Whitham, Linear and Non-linear Waves (Wiley, New York, 1974)
185.
go back to reference G. Carter, J.S. Colligon, M.J. Nobes, Analytical modelling of sputter induced surface morphology. Rad. Eff. 31, 65–87 (1977)CrossRef G. Carter, J.S. Colligon, M.J. Nobes, Analytical modelling of sputter induced surface morphology. Rad. Eff. 31, 65–87 (1977)CrossRef
186.
go back to reference G. Carter, M.J. Nobes, K.I. Arshak, R.P. Webb, D. Evanson, B.D.L. Eghawary, J.H. Williamson, The influence of non-uniform incident flux upon surface erosion processes. J. Mater. Sci. 14, 728–736 (1979)CrossRef G. Carter, M.J. Nobes, K.I. Arshak, R.P. Webb, D. Evanson, B.D.L. Eghawary, J.H. Williamson, The influence of non-uniform incident flux upon surface erosion processes. J. Mater. Sci. 14, 728–736 (1979)CrossRef
187.
go back to reference G. Carter, M.J. Nobes, K.I. Arshak, The application of erosion slowness theory to prediction of surface contour generation during particulate ablation of solids. Wear 53, 245–261 (1979)CrossRef G. Carter, M.J. Nobes, K.I. Arshak, The application of erosion slowness theory to prediction of surface contour generation during particulate ablation of solids. Wear 53, 245–261 (1979)CrossRef
188.
go back to reference C. Catana, J.S. Colligon, G. Carter, The equilibrium topography of sputtered amorphous solids, III. Computer simulation. J. Mater. Sci. 7, 467–471 (1972) C. Catana, J.S. Colligon, G. Carter, The equilibrium topography of sputtered amorphous solids, III. Computer simulation. J. Mater. Sci. 7, 467–471 (1972)
189.
go back to reference T. Ishitani, M. Kato, R. Shimizu, Comments on “The equilibrium topography of sputtered amorphous solids.” J. Mater. Sci. 9, 505–508 (1974)CrossRef T. Ishitani, M. Kato, R. Shimizu, Comments on “The equilibrium topography of sputtered amorphous solids.” J. Mater. Sci. 9, 505–508 (1974)CrossRef
190.
go back to reference J.P. Ducommun, M. Cantagel, M. Moulin, Evolution of well-defined surface contour submitted to ion bombardment: computer simulation and experimental investigation. J. Mater. Sci. 10, 52–62 (1975)CrossRef J.P. Ducommun, M. Cantagel, M. Moulin, Evolution of well-defined surface contour submitted to ion bombardment: computer simulation and experimental investigation. J. Mater. Sci. 10, 52–62 (1975)CrossRef
191.
go back to reference S. Hamaguchi, M. Dalvie, R.T. Farouki, S. Sethuraman, A shock-tracking algorithm for surface evolution under reactive-ion etching. J. Appl. Phys. 74, 5172–5184 (1993)CrossRef S. Hamaguchi, M. Dalvie, R.T. Farouki, S. Sethuraman, A shock-tracking algorithm for surface evolution under reactive-ion etching. J. Appl. Phys. 74, 5172–5184 (1993)CrossRef
192.
go back to reference J.C. Arnold, H.H. Sawin, M. Dalvie, S. Hamaguchi, Simulation of surface topography evolution during plasma etching by the method of characteristics. J. Vac. Sci. Technol. A 12, 620–634 (1994)CrossRef J.C. Arnold, H.H. Sawin, M. Dalvie, S. Hamaguchi, Simulation of surface topography evolution during plasma etching by the method of characteristics. J. Vac. Sci. Technol. A 12, 620–634 (1994)CrossRef
193.
go back to reference E.J. Klein, W.F. Ramirez, Consideration of local shadowing and ion beam voltage effects in the prediction of a surface evolving under ion milling. J. Vac. Sci. Technol. A 18, 166–175 (2000)CrossRef E.J. Klein, W.F. Ramirez, Consideration of local shadowing and ion beam voltage effects in the prediction of a surface evolving under ion milling. J. Vac. Sci. Technol. A 18, 166–175 (2000)CrossRef
194.
go back to reference R. Smith, D.D. Makh, J.M. Walls, Surface morphology during ion etching, the influence of redeposition. Phil. Mag. A 47, 453–481 (1983)CrossRef R. Smith, D.D. Makh, J.M. Walls, Surface morphology during ion etching, the influence of redeposition. Phil. Mag. A 47, 453–481 (1983)CrossRef
195.
go back to reference R. Smith, M.A. Tagg, J.M. Walls, Deterministic models of ion erosion, reflection and redeposition. Vacuum 34, 175–180 (1984)CrossRef R. Smith, M.A. Tagg, J.M. Walls, Deterministic models of ion erosion, reflection and redeposition. Vacuum 34, 175–180 (1984)CrossRef
196.
go back to reference G. Carter, The influence of surface diffusion on topography development of an amorphous solid during sputtering. J. Mater. Sci. 11, 1091–1098 (1976) G. Carter, The influence of surface diffusion on topography development of an amorphous solid during sputtering. J. Mater. Sci. 11, 1091–1098 (1976)
197.
go back to reference C.C. Umbach, R.L. Headrick, K.-C. Chang, Spontaneous nanoscale corrugation of ion-eroded SiO2: the role of ion-irradiation-enhanced viscous flow. Phys. Rev. Lett. 87, 246104 (2001) C.C. Umbach, R.L. Headrick, K.-C. Chang, Spontaneous nanoscale corrugation of ion-eroded SiO2: the role of ion-irradiation-enhanced viscous flow. Phys. Rev. Lett. 87, 246104 (2001)
198.
go back to reference M. Hou, M.T. Robinson, The conditions for total reflection of low-energy atoms from crystal surfaces. Appl. Phys. 17, 371–375 (1978)CrossRef M. Hou, M.T. Robinson, The conditions for total reflection of low-energy atoms from crystal surfaces. Appl. Phys. 17, 371–375 (1978)CrossRef
199.
go back to reference W. Eckstein, Computer Simulation of Ion-Solid Interactions. Springer Series in Material Science, vol. 10 (Springer, Berlin, 1991) W. Eckstein, Computer Simulation of Ion-Solid Interactions. Springer Series in Material Science, vol. 10 (Springer, Berlin, 1991)
200.
go back to reference W. Eckstein, Reflection (backscattering). IPP Report 17/12 (2009) W. Eckstein, Reflection (backscattering). IPP Report 17/12 (2009)
201.
go back to reference R. Smith, M.A. Tagg, An algorithm to calculate secondary sputtering by the reflection of ions in two dimensions. Vacuum 36, 285–288 (1986)CrossRef R. Smith, M.A. Tagg, An algorithm to calculate secondary sputtering by the reflection of ions in two dimensions. Vacuum 36, 285–288 (1986)CrossRef
202.
go back to reference R.E. Lee, Microfabrication of ion beam etching. J. Vac. Sci. Technol. 16, 164–170 (1979)CrossRef R.E. Lee, Microfabrication of ion beam etching. J. Vac. Sci. Technol. 16, 164–170 (1979)CrossRef
203.
go back to reference D.W. Younner, C.M. Haynes, Modeling ion beam milling. J. Vac. Sci. Technol. 21, 677–680 (1982)CrossRef D.W. Younner, C.M. Haynes, Modeling ion beam milling. J. Vac. Sci. Technol. 21, 677–680 (1982)CrossRef
204.
go back to reference F. Johnson, K.A. Ingersoll, Asymmetric triangular grating profiles with 900 groove angles produced by ion beam erosion. Appl. Opt. 20, 2951–2961 (1981) F. Johnson, K.A. Ingersoll, Asymmetric triangular grating profiles with 900 groove angles produced by ion beam erosion. Appl. Opt. 20, 2951–2961 (1981)
205.
go back to reference P.G. Glöersen, Ion beam etching. J. Vac. Sci. Technol. 12, 28–35 (1975) and Masking for ion beam etching. Solid State Technol. 19, 68–73 (1976) P.G. Glöersen, Ion beam etching. J. Vac. Sci. Technol. 12, 2835 (1975) and Masking for ion beam etching. Solid State Technol. 19, 68–73 (1976)
206.
go back to reference R.E. Chapman, Redeposition: a factor in ion beam etching topography. J. Mater. Sci. 12, 1125–1133 (1977)CrossRef R.E. Chapman, Redeposition: a factor in ion beam etching topography. J. Mater. Sci. 12, 1125–1133 (1977)CrossRef
207.
go back to reference J. Belson, I.H. Wilson, Flux density equations for topographical evolution of features on ion bombarded surfaces. Rad. Eff. 51, 27–34 (1980) and Theory of redeposition of sputtered flux on to surface asperities. Nucl. Instr. Meth. 182/183, 275–281 (1981) J. Belson, I.H. Wilson, Flux density equations for topographical evolution of features on ion bombarded surfaces. Rad. Eff. 51, 27–34 (1980) and Theory of redeposition of sputtered flux on to surface asperities. Nucl. Instr. Meth. 182/183, 275–281 (1981)
208.
go back to reference M. Utlaut, Focused Ion Beam, in Handbook of Charged Particle Optics, ed. by J. Orloff (CRC Press, Boca Raton 2009), pp. 523–600 M. Utlaut, Focused Ion Beam, in Handbook of Charged Particle Optics, ed. by J. Orloff (CRC Press, Boca Raton 2009), pp. 523–600
209.
go back to reference N. Yamamuchi, T. Yachi, T. Wada, A pattern edge profile simulation for oblique ion milling. J. Vac. Sci. Technol. A 2, 1552–1557 (1984)CrossRef N. Yamamuchi, T. Yachi, T. Wada, A pattern edge profile simulation for oblique ion milling. J. Vac. Sci. Technol. A 2, 1552–1557 (1984)CrossRef
210.
go back to reference T. Ishitani, T. Ohnishi, Modeling of sputtering and redeposition in focused-ion beam trench milling. J. Vac. Sci. Technol. A 9, 3084–3089 (1991)CrossRef T. Ishitani, T. Ohnishi, Modeling of sputtering and redeposition in focused-ion beam trench milling. J. Vac. Sci. Technol. A 9, 3084–3089 (1991)CrossRef
211.
go back to reference E. Platzgummer, A. Biedermann, H. Langfischer, S. Eder-Kapl, M. Kuemmel, S. Cernusca, H. Loeschner, C. Lehrer, L. Frey, A. Lugstein, E. Bertagnolli, Simulation of ion beam direct structuring for 3D nanoimprint template fabrication. Microelectr. Eng. 83, 936–939 (2006)CrossRef E. Platzgummer, A. Biedermann, H. Langfischer, S. Eder-Kapl, M. Kuemmel, S. Cernusca, H. Loeschner, C. Lehrer, L. Frey, A. Lugstein, E. Bertagnolli, Simulation of ion beam direct structuring for 3D nanoimprint template fabrication. Microelectr. Eng. 83, 936–939 (2006)CrossRef
212.
go back to reference H.-B. Kim, G. Hobler, A. Steiger, A. Lugstein, E. Bertagnolli, Simulation of ion beam-induced micro/nano fabrication. J. Micromech. Microeng. 17, 1178–1183 (2007)CrossRef H.-B. Kim, G. Hobler, A. Steiger, A. Lugstein, E. Bertagnolli, Simulation of ion beam-induced micro/nano fabrication. J. Micromech. Microeng. 17, 1178–1183 (2007)CrossRef
213.
go back to reference A. Mutzke, R. Schneider, SDTrimSP-2D: simulation of particles bombarding on a two dimensional target version 1.0. IPP Report 12/4, MPI Garching (2009) A. Mutzke, R. Schneider, SDTrimSP-2D: simulation of particles bombarding on a two dimensional target version 1.0. IPP Report 12/4, MPI Garching (2009)
214.
go back to reference S. Lindsey, G. Hobler, The significance of redeposition and backscattering in nanostructure formation by focused ion beams. Nucl. Instr. Meth. Phys. Res. B 282, 12–16 (2012)CrossRef S. Lindsey, G. Hobler, The significance of redeposition and backscattering in nanostructure formation by focused ion beams. Nucl. Instr. Meth. Phys. Res. B 282, 12–16 (2012)CrossRef
215.
go back to reference I. Bizyukov, A. Mutzke, R. Schneider, J. Davies, Evolution of the 2D surface structure of a silicon pitch grating under argon ion bombardment: experiment and modeling. Nucl. Instr. Meth. Phys. Res. B 268, 2631–2638 (2010)CrossRef I. Bizyukov, A. Mutzke, R. Schneider, J. Davies, Evolution of the 2D surface structure of a silicon pitch grating under argon ion bombardment: experiment and modeling. Nucl. Instr. Meth. Phys. Res. B 268, 2631–2638 (2010)CrossRef
216.
go back to reference C. Diddens, S.J. Linz, Redeposition during ion beam erosion can stabilize well-ordered nanostructures. Europhys. Lett. 104, 17010 (2013)CrossRef C. Diddens, S.J. Linz, Redeposition during ion beam erosion can stabilize well-ordered nanostructures. Europhys. Lett. 104, 17010 (2013)CrossRef
217.
go back to reference S. Rusponi, G. Costantini, C. Boragno, U. Valbusa, Temperature and time evolution of ripple structure induced by ion sputtering on Cu(110). Phys. Low-Dim. Struct. 5(6), 96–99 (1999) S. Rusponi, G. Costantini, C. Boragno, U. Valbusa, Temperature and time evolution of ripple structure induced by ion sputtering on Cu(110). Phys. Low-Dim. Struct. 5(6), 96–99 (1999)
218.
go back to reference C. Herring, Surface tension as a motivation for sintering, in The Physics of Powder Metallurgy, ed. by W.E. Kingston (McGraw-Hill Book Company, New York, 1951), pp. 143–179 and The use of classical macroscopic concepts in surface-energy problems, in Sintering and Properties of Solid Surfaces, ed. by R. Gomer, C.S. Smith (Chicago University Press, Chicago, 1953), pp. 5–72 C. Herring, Surface tension as a motivation for sintering, in The Physics of Powder Metallurgy, ed. by W.E. Kingston (McGraw-Hill Book Company, New York, 1951), pp. 143179 and The use of classical macroscopic concepts in surface-energy problems, in Sintering and Properties of Solid Surfaces, ed. by R. Gomer, C.S. Smith (Chicago University Press, Chicago, 1953), pp. 5–72
219.
go back to reference S. Liedtke-Grüner, C. Grüner, A. Lotnyk, J.W. Gerlach, B. Rauschenbach, Biaxially textured titanium thin films by oblique angle deposition: conditions and growth mechanisms. Phys. Stat. Sol. (A) 217, 1900636 (2019) S. Liedtke-Grüner, C. Grüner, A. Lotnyk, J.W. Gerlach, B. Rauschenbach, Biaxially textured titanium thin films by oblique angle deposition: conditions and growth mechanisms. Phys. Stat. Sol. (A) 217, 1900636 (2019)
220.
go back to reference M. Tartz, E. Hartmann, F. Scholze, H. Neumann, Modeling of broad beam ion sources. Rev. Sci. Instrum. 69, 1147–1149 (1998)CrossRef M. Tartz, E. Hartmann, F. Scholze, H. Neumann, Modeling of broad beam ion sources. Rev. Sci. Instrum. 69, 1147–1149 (1998)CrossRef
221.
go back to reference B. Ziberi, F. Frost, M. Tartz, H. Neumann, B. Rauschenbach, Importance of ion beam parameters on self-organized pattern formation on semiconductor surfaces by ion beam erosion. Thin Solid Film 459, 106–110 (2004)CrossRef B. Ziberi, F. Frost, M. Tartz, H. Neumann, B. Rauschenbach, Importance of ion beam parameters on self-organized pattern formation on semiconductor surfaces by ion beam erosion. Thin Solid Film 459, 106–110 (2004)CrossRef
222.
go back to reference B. Ziberi, F. Frost, M. Tartz, H. Neumann, B. Rauschenbach, Ripple rotation, pattern transitions and long range ordered dots on silicon by ion beam erosion. Appl. Phys. Lett. 92, 063102 (2008) B. Ziberi, F. Frost, M. Tartz, H. Neumann, B. Rauschenbach, Ripple rotation, pattern transitions and long range ordered dots on silicon by ion beam erosion. Appl. Phys. Lett. 92, 063102 (2008)
223.
go back to reference R. Kree, T. Yasseri, A.K. Hartmann, The influence of beam divergence on ion beam-induced surface patterns. Nucl. Instr. Meth. Phys. Res. B 267, 1407–1411 (2009)CrossRef R. Kree, T. Yasseri, A.K. Hartmann, The influence of beam divergence on ion beam-induced surface patterns. Nucl. Instr. Meth. Phys. Res. B 267, 1407–1411 (2009)CrossRef
224.
go back to reference C.A. Volkert, Stress and plastic flow in silicon during amorphization by ion bombardment. J. Appl. Phys. 70, 3521–3527 (1991) and C.A. Volkert, A. Polman, Radiation-enhanced plastic flow of covalent materials during ion irradiation. Mater. Res. Soc. Symp. Proc. 235, 3–14 (1992) C.A. Volkert, Stress and plastic flow in silicon during amorphization by ion bombardment. J. Appl. Phys. 70, 3521–3527 (1991) and C.A. Volkert, A. Polman, Radiation-enhanced plastic flow of covalent materials during ion irradiation. Mater. Res. Soc. Symp. Proc. 235, 3–14 (1992)
225.
go back to reference L.D. Landau, E.M. Lifshitz, Fluid Mechanics, vol. IV (Institute of Physical Problems, Pergamon Press, Oxford, 1966) L.D. Landau, E.M. Lifshitz, Fluid Mechanics, vol. IV (Institute of Physical Problems, Pergamon Press, Oxford, 1966)
226.
go back to reference S.E. Orchard, On surface levelling in viscous liquids and gels. Appl. Sci. Res. Section A, 11, 451–464 (1963) S.E. Orchard, On surface levelling in viscous liquids and gels. Appl. Sci. Res. Section A, 11, 451–464 (1963)
227.
go back to reference L.E. Stillwagon, R.G. Larson, Fundamentals of topographic substrate leveling. J. Appl. Phys. 63, 5251–5258 (1988)CrossRef L.E. Stillwagon, R.G. Larson, Fundamentals of topographic substrate leveling. J. Appl. Phys. 63, 5251–5258 (1988)CrossRef
228.
go back to reference S. Vauth, Glättungsmechanismen beim Ionenbeschuss rauer amorpher Oberflächen, Dissertation, University Göttingen (2007) S. Vauth, Glättungsmechanismen beim Ionenbeschuss rauer amorpher Oberflächen, Dissertation, University Göttingen (2007)
229.
go back to reference A.S. Rudy, V.K. Smirnov, Hydrodynamic model of wave-ordered structures formed by ion bombardment of solids. Nucl. Instr. Meth. Phys. Res. B 159, 52–59 (1999)CrossRef A.S. Rudy, V.K. Smirnov, Hydrodynamic model of wave-ordered structures formed by ion bombardment of solids. Nucl. Instr. Meth. Phys. Res. B 159, 52–59 (1999)CrossRef
231.
go back to reference S. Roorda, W.C. Sinke, J.M. Poate, D.C. Jacobson, S. Dierker, B.S. Dennis, D.J. Eaglesham, F. Spaepen, P. Fuoss, Structural relaxation and defect annihilation in pure amorphous silicon. Phys. Rev. B 44, 3702–3725 (1991)CrossRef S. Roorda, W.C. Sinke, J.M. Poate, D.C. Jacobson, S. Dierker, B.S. Dennis, D.J. Eaglesham, F. Spaepen, P. Fuoss, Structural relaxation and defect annihilation in pure amorphous silicon. Phys. Rev. B 44, 3702–3725 (1991)CrossRef
232.
go back to reference S.T. Pantelides, Defects in amorphous silicon: a new perspective. Phys. Rev. Lett. 57, 2979–2983 (1986)CrossRef S.T. Pantelides, Defects in amorphous silicon: a new perspective. Phys. Rev. Lett. 57, 2979–2983 (1986)CrossRef
233.
go back to reference N.V. Medhekar, W.L. Chan, V.B. Shenoy, E. Chason, Stress-enhanced pattern formation on surfaces during low energy ion bombardment. J. Phys. Condens. Matter 21, 224021 (2009) N.V. Medhekar, W.L. Chan, V.B. Shenoy, E. Chason, Stress-enhanced pattern formation on surfaces during low energy ion bombardment. J. Phys. Condens. Matter 21, 224021 (2009)
234.
go back to reference A. Witvrouw, F. Spaepen, Viscosity and elastic constants of amorphous Si and Ge. J. Appl. Phys. 74, 7154–7161 (1993)CrossRef A. Witvrouw, F. Spaepen, Viscosity and elastic constants of amorphous Si and Ge. J. Appl. Phys. 74, 7154–7161 (1993)CrossRef
235.
go back to reference Yu.V. Trushin, Theoretical concepts of radiation swelling of materials and the characteristics of sinks. J. Tech. Phys. 39, 564–568 (1994) Yu.V. Trushin, Theoretical concepts of radiation swelling of materials and the characteristics of sinks. J. Tech. Phys. 39, 564–568 (1994)
236.
go back to reference L.M. Wang, R.C. Birtcher, Radiation-induced formation of cavities in amorphous germanium. Appl. Phys. Lett. 55, 2494–2497 (1989)CrossRef L.M. Wang, R.C. Birtcher, Radiation-induced formation of cavities in amorphous germanium. Appl. Phys. Lett. 55, 2494–2497 (1989)CrossRef
237.
go back to reference S.G. Mayr, The role of ion irradiation induced viscous flow in thin film structuring: hard matter going soft. Adv. Solid State Phys. 45, 327–338 (2005)CrossRef S.G. Mayr, The role of ion irradiation induced viscous flow in thin film structuring: hard matter going soft. Adv. Solid State Phys. 45, 327–338 (2005)CrossRef
238.
go back to reference S.A. Norris, J. Samela, L. Bukonte, M. Backman, D. Flyura, K. Nordlund, C.S. Madi, M.P. Brenner, M.J. Aziz, Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation. Nat. Commun. 2, 276–281 (2011)CrossRef S.A. Norris, J. Samela, L. Bukonte, M. Backman, D. Flyura, K. Nordlund, C.S. Madi, M.P. Brenner, M.J. Aziz, Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation. Nat. Commun. 2, 276–281 (2011)CrossRef
239.
go back to reference S.G Mayr, Y. Ashkenazy, K. Albe, R.S. Averback, Mechanisms of radiation-induced viscous flow: role of point defects. Phys. Rev. Lett. 90, 055505 (2003) S.G Mayr, Y. Ashkenazy, K. Albe, R.S. Averback, Mechanisms of radiation-induced viscous flow: role of point defects. Phys. Rev. Lett. 90, 055505 (2003)
240.
go back to reference B. Ziberi, Ion beam-induced pattern formation on Si and Ge surfaces, Dissertation, University Leipzig (2008) B. Ziberi, Ion beam-induced pattern formation on Si and Ge surfaces, Dissertation, University Leipzig (2008)
241.
go back to reference S. Vauth, S.G. Mayr, Relevance of surface viscous flow, surface diffusion, and ballistic effects in keV ion smoothing of amorphous surfaces. Phys. Rev. B 75, 224107 (2007) S. Vauth, S.G. Mayr, Relevance of surface viscous flow, surface diffusion, and ballistic effects in keV ion smoothing of amorphous surfaces. Phys. Rev. B 75, 224107 (2007)
242.
go back to reference H. Zhou, Y. Wang, L. Zhou, R.L. Headrick, A.S. Özcan, Y. Wang, G. Özaydin, K.F. Ludwig, Jr., D.P. Siddons, Wavelength tunability of ion-bombardment-induced ripples on sapphire. Phys. Rev. B 75, 155416 (2017) H. Zhou, Y. Wang, L. Zhou, R.L. Headrick, A.S. Özcan, Y. Wang, G. Özaydin, K.F. Ludwig, Jr., D.P. Siddons, Wavelength tunability of ion-bombardment-induced ripples on sapphire. Phys. Rev. B 75, 155416 (2017)
243.
go back to reference D. Babonneau, E. Vandenhecke, S. Camelio, Formation of nanoripples on amorphous alumina thin films during low-energy ion beam sputtering: experiments and simulations. Phys. Rev. B 95, 085412 (2017) D. Babonneau, E. Vandenhecke, S. Camelio, Formation of nanoripples on amorphous alumina thin films during low-energy ion beam sputtering: experiments and simulations. Phys. Rev. B 95, 085412 (2017)
244.
go back to reference P.K. Giri, V. Raineri, G. Franzo, E. Rimini, Mechanism of swelling in low-energy ion-irradiated silicon. Phys. Rev. B 65, 012110 (2001) and P.K. Giri studies on the surface swelling of ion-irradiated silicon: role of defects. Mater. Sci. Eng. B 121, 238–243 (2005) P.K. Giri, V. Raineri, G. Franzo, E. Rimini, Mechanism of swelling in low-energy ion-irradiated silicon. Phys. Rev. B 65, 012110 (2001) and P.K. Giri studies on the surface swelling of ion-irradiated silicon: role of defects. Mater. Sci. Eng. B 121, 238–243 (2005)
245.
go back to reference S. Tamulevicius, I. Pozéla, M. Andrulevicius, A simple model of radiation swelling of silicon. Mater. Sci. Eng. B 40, 141–146 (1996)CrossRef S. Tamulevicius, I. Pozéla, M. Andrulevicius, A simple model of radiation swelling of silicon. Mater. Sci. Eng. B 40, 141–146 (1996)CrossRef
246.
go back to reference G.M. McCracken, The behaviour of surfaces under ion bombardment, Reports on Progress in Physics, 38 241-327 (1975) G.M. McCracken, The behaviour of surfaces under ion bombardment, Reports on Progress in Physics, 38 241-327 (1975)
Metadata
Title
Evolution of Topography Under Low-Energy Ion Bombardment
Author
Bernd Rauschenbach
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-97277-6_6

Premium Partners