Skip to main content
Top

2020 | OriginalPaper | Chapter

Examples of Decompositions for Time and Space Domains and Discretization of Equations for General Purpose Computational Fluid Dynamics Programs and Historical Perspective of Some Key Developments

Author : Milorad B. Dzodzo

Published in: 50 Years of CFD in Engineering Sciences

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents two examples from mid-eighties related to decomposition for time and space domains and discretization of equations for the general purpose Computational Fluid Dynamics (CFD) programs. The first example is related to the implementation of rectangular coordinates to simulate flow and heat transfer in the arbitrarily shaped domains with various heat transfer boundary conditions. The second example demonstrates capabilities to introduce and test implicit and explicit higher order numerical schemes. In both cases the implementation of linearized source terms for various equations is used to allow regrouping and adding new terms in equations without the need for major changes to the general purpose CFD programs. Presented examples provide a historical perspective of some key developments based on the well-planned code architecture. These developments are contrasted with the other selected historical developments and current practices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Harlow, F. H. (1955). A machine calculation method for hydrodynamic problems. LAMS-1956, Los Alamos. Harlow, F. H. (1955). A machine calculation method for hydrodynamic problems. LAMS-1956, Los Alamos.
3.
go back to reference Harlow, F. H. (1964). The particle-in-cell computing method for fluid dynamics. In B. Alder (Ed.), Methods in computational physics (pp. 319–343). New York: Academic Press. Harlow, F. H. (1964). The particle-in-cell computing method for fluid dynamics. In B. Alder (Ed.), Methods in computational physics (pp. 319–343). New York: Academic Press.
6.
go back to reference Rosten, H. I., & Spalding, D. B. (1985). PHOENICS-84 Reference Handbook. CHAM TR/100, CHAM, London, UK. Rosten, H. I., & Spalding, D. B. (1985). PHOENICS-84 Reference Handbook. CHAM TR/100, CHAM, London, UK.
9.
go back to reference Dzodzo, M. B. (1987). Application of rectangular co-ordinates to the problem of laminar combined convection in a straight horizontal tube whose circumference is heated nonuniformly. PDR/CFDU IC/33 Report, Computational Fluid Dynamics Unit, Imperial College of Science and Technology, London. Dzodzo, M. B. (1987). Application of rectangular co-ordinates to the problem of laminar combined convection in a straight horizontal tube whose circumference is heated nonuniformly. PDR/CFDU IC/33 Report, Computational Fluid Dynamics Unit, Imperial College of Science and Technology, London.
10.
go back to reference Dzodzo, M. B., & Spalding D. B. (1986). Three-dimensional transient pollutant-cloud transport as a comparison test for the FIP, QUICK, QUICKEST and LEITH’S formulations. PDR/CFDU IC/28 Report, Computational Fluid Dynamics Unit, Imperial College of Science and Technology, London. Dzodzo, M. B., & Spalding D. B. (1986). Three-dimensional transient pollutant-cloud transport as a comparison test for the FIP, QUICK, QUICKEST and LEITH’S formulations. PDR/CFDU IC/28 Report, Computational Fluid Dynamics Unit, Imperial College of Science and Technology, London.
11.
go back to reference Noye, B. J. (1978). an introduction to finite difference technologies. In B. J. Noye (Ed.), Numerical simulation of fluid motion. North-Holland Publishing Company. Noye, B. J. (1978). an introduction to finite difference technologies. In B. J. Noye (Ed.), Numerical simulation of fluid motion. North-Holland Publishing Company.
12.
go back to reference Rhie, C. M. (1981). A numerical study of the flow past an isolated airfoil with separation. Ph.D. thesis, Dept. of Mech. and Ind. Eng., University of Illinois at Urbana-Champaign. Rhie, C. M. (1981). A numerical study of the flow past an isolated airfoil with separation. Ph.D. thesis, Dept. of Mech. and Ind. Eng., University of Illinois at Urbana-Champaign.
15.
go back to reference Roelofs, F., Gopala, V. R., Van Tichelen, K., Cheng, X., Merzari, E., & Pointer, W. D. (2013). Status and future challenges of CFD for liquid metal cooled reactors. In IAEA fast reactor conference. Roelofs, F., Gopala, V. R., Van Tichelen, K., Cheng, X., Merzari, E., & Pointer, W. D. (2013). Status and future challenges of CFD for liquid metal cooled reactors. In IAEA fast reactor conference.
16.
go back to reference Viellieber, M., & Class, A. (2015). Investigating reactor components with the coarse-grid-methodology. In 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH-16, Chicago, IL, August 30–September 4, 2015 (pp. 2788–2801). Viellieber, M., & Class, A. (2015). Investigating reactor components with the coarse-grid-methodology. In 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH-16, Chicago, IL, August 30–September 4, 2015 (pp. 2788–2801).
17.
go back to reference Zienkiewicz, O. C. (1975). Why finite elements? In R. H. Gallagher, J. T. Oden, C. Taylor, & O. C. Zienkiewicz (Eds.), Finite elements in fluids—Vol. 1 Viscous flow and hydrodynamics, Chapter 1 (pp. 1–23). Wiley. Zienkiewicz, O. C. (1975). Why finite elements? In R. H. Gallagher, J. T. Oden, C. Taylor, & O. C. Zienkiewicz (Eds.), Finite elements in fluids—Vol. 1 Viscous flow and hydrodynamics, Chapter 1 (pp. 1–23). Wiley.
18.
go back to reference Baker, A. J. (1983). Finite element computational fluid mechanics. Hemisphere Publishing Corporation. Baker, A. J. (1983). Finite element computational fluid mechanics. Hemisphere Publishing Corporation.
31.
go back to reference Leith, C. E. (1965). Numerical simulation of the Earth’s atmosphere. Methods Computational Physics, 4, 1–28. Leith, C. E. (1965). Numerical simulation of the Earth’s atmosphere. Methods Computational Physics, 4, 1–28.
42.
go back to reference Agrawal, R. K. (1981). A third-order-accurate upwind scheme for Navier-Stokes solutions in three dimensions. In K. N. Ghia, T. J. Mueller, & Patel (Eds.), Computers in flow predictions and fluid dynamics experiments. Winter Annual Meeting of the ASME, ASME, Washington, D.C., November 15–20, 1981 (pp. 73–82). Agrawal, R. K. (1981). A third-order-accurate upwind scheme for Navier-Stokes solutions in three dimensions. In K. N. Ghia, T. J. Mueller, & Patel (Eds.), Computers in flow predictions and fluid dynamics experiments. Winter Annual Meeting of the ASME, ASME, Washington, D.C., November 15–20, 1981 (pp. 73–82).
43.
go back to reference Kawamura, T., & Kuwahara, K. (1984). Computation of high Reynolds number flow around a circular cylinder of high reynolds number flow around a circular cylinder with surface roughness. In AIAA-84–0340, AIAA 22nd Aerospace Sciences Meeting, Reno, Nevada, USA, January 9–12, 1984. https://doi.org/10.2514/6.1984-340. Kawamura, T., & Kuwahara, K. (1984). Computation of high Reynolds number flow around a circular cylinder of high reynolds number flow around a circular cylinder with surface roughness. In AIAA-84–0340, AIAA 22nd Aerospace Sciences Meeting, Reno, Nevada, USA, January 9–12, 1984. https://​doi.​org/​10.​2514/​6.​1984-340.
44.
45.
go back to reference Leonard, B. P. (1979). A survey of finite differences of opinion on numerical muddling of the incomprehensible defective confusion equation. In T. J. R. Hughes (Ed.), Finite element methods for convection dominated flows. Presented at The Winter Annual Meeting of the American Society of Mechanical Engineers, sponsored by: The Applied Mechanics Division, ASME, AMD, New York, NY, USA, December 2–7, 1979 (Vol. 34, pp. 1–17). Leonard, B. P. (1979). A survey of finite differences of opinion on numerical muddling of the incomprehensible defective confusion equation. In T. J. R. Hughes (Ed.), Finite element methods for convection dominated flows. Presented at The Winter Annual Meeting of the American Society of Mechanical Engineers, sponsored by: The Applied Mechanics Division, ASME, AMD, New York, NY, USA, December 2–7, 1979 (Vol. 34, pp. 1–17).
48.
go back to reference Malin, M. R., & Waterson, N. P. (1999). Schemes for convection discretization in PHOENICS. PHOENICS Journal, 12(2), 173–201. Malin, M. R., & Waterson, N. P. (1999). Schemes for convection discretization in PHOENICS. PHOENICS Journal, 12(2), 173–201.
52.
go back to reference Dzodzo, M. B. (1983). Effect of non-uniform heating on laminar mixed convection in a straight horizontal tube (in Serbian). M.Sc., Dept. of Mechanical Engineering, The University of Belgrade. Dzodzo, M. B. (1983). Effect of non-uniform heating on laminar mixed convection in a straight horizontal tube (in Serbian). M.Sc., Dept. of Mechanical Engineering, The University of Belgrade.
54.
go back to reference Dzodzo, M. (1991). Application of rectangular coordinates to the problem of laminar natural convection in enclosures of arbitrary cross-section. In Proceedings of the 1st ICHMT International Numerical Heat Transfer Conference and Software Show, Part II, Guildford, Surrey, July 22–26, 1991 (pp. 1–11). Dzodzo, M. (1991). Application of rectangular coordinates to the problem of laminar natural convection in enclosures of arbitrary cross-section. In Proceedings of the 1st ICHMT International Numerical Heat Transfer Conference and Software Show, Part II, Guildford, Surrey, July 22–26, 1991 (pp. 1–11).
55.
go back to reference Dzodzo, M. B. (1991). Laminar natural convection in some enclosures of arbitrary cross sections (in Serbian). Ph.D. thesis, Dept. of Mechanical Engineering, The University of Belgrade. Dzodzo, M. B. (1991). Laminar natural convection in some enclosures of arbitrary cross sections (in Serbian). Ph.D. thesis, Dept. of Mechanical Engineering, The University of Belgrade.
56.
go back to reference Dzodzo, M. B. (1993). Visualization of laminar natural convection in romb-shaped enclosures by means of liquid crystals. In S. Sideman, K. Hijikata, & W. J. Yang (Eds.), Imaging in transport processes (pp. 183–193). Begell House Publishers. Dzodzo, M. B. (1993). Visualization of laminar natural convection in romb-shaped enclosures by means of liquid crystals. In S. Sideman, K. Hijikata, & W. J. Yang (Eds.), Imaging in transport processes (pp. 183–193). Begell House Publishers.
57.
go back to reference Dzodzo, M. B. (2013). Natural convection in cubic and rhomb-shaped enclosures. In Proceedings of the ASME 2013 Heat Transfer Summer Conference, Paper No. HT2013-17724, Minneapolis, MN, USA, July 14–19, 2013 (pp. V003T21A004, 10 pp.). https://doi.org/10.1115/ht2013-17724. Dzodzo, M. B. (2013). Natural convection in cubic and rhomb-shaped enclosures. In Proceedings of the ASME 2013 Heat Transfer Summer Conference, Paper No. HT2013-17724, Minneapolis, MN, USA, July 14–19, 2013 (pp. V003T21A004, 10 pp.). https://​doi.​org/​10.​1115/​ht2013-17724.
58.
go back to reference Peric, M. (1985). A finite volume method for the prediction of three dimensional fluid flow in complex ducts. Ph.D. thesis, Imperial College, London, U.K. Peric, M. (1985). A finite volume method for the prediction of three dimensional fluid flow in complex ducts. Ph.D. thesis, Imperial College, London, U.K.
59.
go back to reference Boussinesq, J. (1903). Théorie Analitique de la Chaleur (in French) (Vol. 2, p. 172). Paris: Gauthier-Villars. Boussinesq, J. (1903). Théorie Analitique de la Chaleur (in French) (Vol. 2, p. 172). Paris: Gauthier-Villars.
61.
go back to reference Cuckovic-Dzodzo, D. M. (1996). Effects of heat conducting partition on laminar natural convection in an enclosure (in Serbian). M.Sc. Thesis, Department of Mechanical Engineering, The University of Belgrade. Cuckovic-Dzodzo, D. M. (1996). Effects of heat conducting partition on laminar natural convection in an enclosure (in Serbian). M.Sc. Thesis, Department of Mechanical Engineering, The University of Belgrade.
62.
go back to reference Cuckovic-Dzodzo, D. M., Dzodzo, M. B., & Pavlovic, M. D. (1996). Visualization of laminar natural convection in a cubical enclosure with partition. In H. W. Coleman (Ed.), Proceedings of the ASME Fluids Engineering Division Summer Meeting, 1996. Presented at the 1996 ASME Fluids Engineering Division Summer Meeting, FED, San Diego, California, July 7–11, 1996 (Vol. 239, pp. 225–230). Cuckovic-Dzodzo, D. M., Dzodzo, M. B., & Pavlovic, M. D. (1996). Visualization of laminar natural convection in a cubical enclosure with partition. In H. W. Coleman (Ed.), Proceedings of the ASME Fluids Engineering Division Summer Meeting, 1996. Presented at the 1996 ASME Fluids Engineering Division Summer Meeting, FED, San Diego, California, July 7–11, 1996 (Vol. 239, pp. 225–230).
63.
go back to reference Cuckovic-Dzodzo, D. M., Dzodzo, M. B., & Pavlovic, M. D. (1998). A mathematical model and numerical solution for the conjugated heat transfer in a fully partitioned enclosure containing the fluids with nonlinear thermophysical properties. Theoretical and Applied Mechanics, Yugoslav Society of Mechanics, 24, 29–54.MATH Cuckovic-Dzodzo, D. M., Dzodzo, M. B., & Pavlovic, M. D. (1998). A mathematical model and numerical solution for the conjugated heat transfer in a fully partitioned enclosure containing the fluids with nonlinear thermophysical properties. Theoretical and Applied Mechanics, Yugoslav Society of Mechanics, 24, 29–54.MATH
68.
go back to reference Graham, A. D., & Mallinson, G. D. (1977). Three-dimensional convection in an inclined differentially heated box. In 6th Australasian Hydraulics and Fluid Mechanics Conference, Adelaide, Australia, 5–9 December 1977 (pp. 467–476). Graham, A. D., & Mallinson, G. D. (1977). Three-dimensional convection in an inclined differentially heated box. In 6th Australasian Hydraulics and Fluid Mechanics Conference, Adelaide, Australia, 5–9 December 1977 (pp. 467–476).
72.
74.
go back to reference Belotserkovskii, O. M., & Davydov, Yu M. (1982). The large-particle method in gas dynamics—A computational experiment. Moscow: Izdatel’stvo Nauka. (in Russian). Belotserkovskii, O. M., & Davydov, Yu M. (1982). The large-particle method in gas dynamics—A computational experiment. Moscow: Izdatel’stvo Nauka. (in Russian).
78.
go back to reference Smith, L. D., Conner, M. E., Liu, B., Dzodzo, M. B., Paramonov, D. V., Beasley, D. E., et al. (2002). Benchmarking computational fluid dynamics for application to PWR fuel. In 10th International Conference on Nuclear Engineering, Paper No. ICONE10–22475, Arlington, VA, USA, April 14–18, 2002 (Vol. 3, pp. 823–830). https://doi.org/10.1115/icone10-22475. Smith, L. D., Conner, M. E., Liu, B., Dzodzo, M. B., Paramonov, D. V., Beasley, D. E., et al. (2002). Benchmarking computational fluid dynamics for application to PWR fuel. In 10th International Conference on Nuclear Engineering, Paper No. ICONE10–22475, Arlington, VA, USA, April 14–18, 2002 (Vol. 3, pp. 823–830). https://​doi.​org/​10.​1115/​icone10-22475.
79.
go back to reference Carrilho, L. A., & Dzodzo, M. B. (2018). Conjugated heat transfer model for ribbed surface convection enhancement and solid body temperature fluctuations. In A. P. Silva Freire, K. Hanjalic, K. Suga, D. Borello, M. Haziabdic (Eds.), Turbulence, heat and mass transfer. Proceedings of the Ninth International Symposium on Turbulence, Heat and Mass Transfer, Rio de Janeiro, Brazil, 10–13 July 2018 (pp. 383–386). New York, Wallingford: Begell House Inc. Carrilho, L. A., & Dzodzo, M. B. (2018). Conjugated heat transfer model for ribbed surface convection enhancement and solid body temperature fluctuations. In A. P. Silva Freire, K. Hanjalic, K. Suga, D. Borello, M. Haziabdic (Eds.), Turbulence, heat and mass transfer. Proceedings of the Ninth International Symposium on Turbulence, Heat and Mass Transfer, Rio de Janeiro, Brazil, 10–13 July 2018 (pp. 383–386). New York, Wallingford: Begell House Inc.
80.
go back to reference Dzodzo, M. B. (1995). A multiblock procedure for the prediction of the fluid flow inside the complex three dimensional domains with specified pressures on the open boundaries. In D. Hui & S. Michaelides (Eds.), SES’95 Society of Engineering Science 32nd Annual Technical Meeting, University of New Orleans, New Orleans, Louisiana, USA, October 29–November 2, 1995 (pp. 729–730). Dzodzo, M. B. (1995). A multiblock procedure for the prediction of the fluid flow inside the complex three dimensional domains with specified pressures on the open boundaries. In D. Hui & S. Michaelides (Eds.), SES’95 Society of Engineering Science 32nd Annual Technical Meeting, University of New Orleans, New Orleans, Louisiana, USA, October 29–November 2, 1995 (pp. 729–730).
82.
86.
go back to reference Carslaw, H. C., & Jaeger, J. C. (1959). Conduction of heat in solids (2nd ed.). Oxford University Press. Carslaw, H. C., & Jaeger, J. C. (1959). Conduction of heat in solids (2nd ed.). Oxford University Press.
87.
go back to reference Leonard, B. P. (1980). The QUICK algorithm: A uniformly third-order finite-difference method for highly convective flows. In K. Morgan, C. Taylor, & C. A. Brebbia (Eds.), Computer methods in fluids (pp. 159–195). Pentec Press. Leonard, B. P. (1980). The QUICK algorithm: A uniformly third-order finite-difference method for highly convective flows. In K. Morgan, C. Taylor, & C. A. Brebbia (Eds.), Computer methods in fluids (pp. 159–195). Pentec Press.
88.
go back to reference Castrejon, A. (1983). Particle tracking subroutines for numerical flow visualization. PDR/CFDU IC/10 Report, Computational Fluid Dynamics Unit, Imperial College of Science and Technology, London. Castrejon, A. (1983). Particle tracking subroutines for numerical flow visualization. PDR/CFDU IC/10 Report, Computational Fluid Dynamics Unit, Imperial College of Science and Technology, London.
89.
go back to reference Castrejon, A., & Andrews, M. J. (1986). A procedure for calculating moving-interface flows with Phoenics-84. In N. C. Markatos, M. Cross, D. G. Tatchell, & N. Rhodes (Eds.), Numerical simulation of fluid flow and heat/mass transfer processes. Lecture notes in engineering (Vol. 18, pp. 433–443). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-82781-5_34. Castrejon, A., & Andrews, M. J. (1986). A procedure for calculating moving-interface flows with Phoenics-84. In N. C. Markatos, M. Cross, D. G. Tatchell, & N. Rhodes (Eds.), Numerical simulation of fluid flow and heat/mass transfer processes. Lecture notes in engineering (Vol. 18, pp. 433–443). Berlin, Heidelberg: Springer. https://​doi.​org/​10.​1007/​978-3-642-82781-5_​34.
Metadata
Title
Examples of Decompositions for Time and Space Domains and Discretization of Equations for General Purpose Computational Fluid Dynamics Programs and Historical Perspective of Some Key Developments
Author
Milorad B. Dzodzo
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-2670-1_4

Premium Partners