Skip to main content
Top
Published in: Physics of Metals and Metallography 4/2022

01-04-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Exchange Correlation Effects in Modulated Martensitic Structures of the Mn2NiGa Alloy

Authors: K. R. Erager, D. R. Baigutlin, V. V. Sokolovskiy, V. D. Buchelnikov

Published in: Physics of Metals and Metallography | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study is devoted to ab initio calculations of the ground state properties of the Mn2NiGa Heusler alloy in the austenitic and martensitic phases. The calculations were performed using an approach in which exchange correlation effects are taken into account via the generalized and metageneralized gradient approximations. The martensitic phase includes four low symmetry structures: the tetragonal unmodulated and three-, five-, and seven-layer modulated monoclinic structures. It is shown that both approximations predict the martensitic transformation between the cubic austenitic and unmodulated martensitic phases, as well as the presence of modulated structures in the martensitic phase. However, the considered approximations lead to opposite behaviors of the energy of the structures and the modulation amplitude with an increase in the modulation period. Namely, these characteristics increase within the generalized gradient approximation and decrease within the metageneralized gradient approximation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, and E. I. Estrin, “Shape memory ferromagnets,” Phys.-Usp. 43, 559 (2003).CrossRef A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, and E. I. Estrin, “Shape memory ferromagnets,” Phys.-Usp. 43, 559 (2003).CrossRef
2.
go back to reference V. D. Buchel’nikov, A. N. Vasiliev, V. V. Koledov, S. V. Taskaev, V. V. Khovailo, and V. G. Shavrov, “Magnetic shape-memory alloys: phase transitions and functional properties,” Phys.-Usp. 49, 871 (2006).CrossRef V. D. Buchel’nikov, A. N. Vasiliev, V. V. Koledov, S. V. Taskaev, V. V. Khovailo, and V. G. Shavrov, “Magnetic shape-memory alloys: phase transitions and functional properties,” Phys.-Usp. 49, 871 (2006).CrossRef
3.
go back to reference P. Entel, V. D. Buchelnikov, V. V. Khovailo, A. T. Zayak, W. A. Adeagbo, M. E. Gruner, H. C. Herper, and E. F. Wassermann, “Modeling the phase diagram of magnetic shape memory Heusler alloys,” J. Phys. D: Appl. Phys. 39 (5), 865 (2006).CrossRef P. Entel, V. D. Buchelnikov, V. V. Khovailo, A. T. Zayak, W. A. Adeagbo, M. E. Gruner, H. C. Herper, and E. F. Wassermann, “Modeling the phase diagram of magnetic shape memory Heusler alloys,” J. Phys. D: Appl. Phys. 39 (5), 865 (2006).CrossRef
4.
go back to reference T. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem. 39 (1), 1 (2011).CrossRef T. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem. 39 (1), 1 (2011).CrossRef
5.
go back to reference P. Brown, J. Crangle, T. Kanomata, M. Matsumoto, K. Neumann, B. Ouladdiaf, and K. Ziebeck, “The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa,” J. Phys.: Condens. Matter 14, 10159 (2002). P. Brown, J. Crangle, T. Kanomata, M. Matsumoto, K. Neumann, B. Ouladdiaf, and K. Ziebeck, “The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa,” J. Phys.: Condens. Matter 14, 10159 (2002).
6.
go back to reference J. Pons, R. Santamarta, V. A. Chernenko, and E. Cesari, “Long-period martensitic structures of Ni–Mn–Ga alloys studied by high-resolution transmission electron microscopy,” J. Appl. Phys. 97, 083516 (2005).CrossRef J. Pons, R. Santamarta, V. A. Chernenko, and E. Cesari, “Long-period martensitic structures of Ni–Mn–Ga alloys studied by high-resolution transmission electron microscopy,” J. Appl. Phys. 97, 083516 (2005).CrossRef
7.
go back to reference L. Straka, O. Heczko, H. Seiner, N. Lanska, J. Drahokoupil, A. Soroka, S. Fähler, H. Hänninen, and A. Sozinov, “Highly mobile twinned interface in 10 M modulated Ni–Mn–Ga martensite: analysis beyond the tetragonal approximation of lattice,” Acta Mater. 59, 7450 (2011).CrossRef L. Straka, O. Heczko, H. Seiner, N. Lanska, J. Drahokoupil, A. Soroka, S. Fähler, H. Hänninen, and A. Sozinov, “Highly mobile twinned interface in 10 M modulated Ni–Mn–Ga martensite: analysis beyond the tetragonal approximation of lattice,” Acta Mater. 59, 7450 (2011).CrossRef
8.
go back to reference S. J. Murray, M. Marioni, S. M. Allen, R. C. O’Handley, and T. A. Lograsso, “6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga,” Appl. Phys. Lett. 77, 886 (2000).CrossRef S. J. Murray, M. Marioni, S. M. Allen, R. C. O’Handley, and T. A. Lograsso, “6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga,” Appl. Phys. Lett. 77, 886 (2000).CrossRef
9.
go back to reference A. Sozinov, A. Likhachev, N. Lanska, and K. Ullakko, “Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase,” Appl. Phys. Lett. 80, 1746 (2002).CrossRef A. Sozinov, A. Likhachev, N. Lanska, and K. Ullakko, “Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase,” Appl. Phys. Lett. 80, 1746 (2002).CrossRef
10.
go back to reference A. Sozinov, A. Likhachev, and K. Ullakko, “Crystal structures and magnetic anisotropy properties of Ni–Mn–Ga martensitic phases with giant magnetic-field-induced strain,” IEEE Trans. Magn. 38, 2814 (2002).CrossRef A. Sozinov, A. Likhachev, and K. Ullakko, “Crystal structures and magnetic anisotropy properties of Ni–Mn–Ga martensitic phases with giant magnetic-field-induced strain,” IEEE Trans. Magn. 38, 2814 (2002).CrossRef
11.
go back to reference Y. Lee, J. Y. Rhee, and B. N. Harmon, “Generalized susceptibility of the magnetic shape-memory alloy Ni2MnGa,” Phys. Rev. B 66, 054424 (2002).CrossRef Y. Lee, J. Y. Rhee, and B. N. Harmon, “Generalized susceptibility of the magnetic shape-memory alloy Ni2MnGa,” Phys. Rev. B 66, 054424 (2002).CrossRef
12.
go back to reference C. Bungaro, K. M. Rabe, and A. Dal Corso, “First-principles study of lattice instabilities in ferromagnetic Ni2MnGa,” Phys. Rev. B 68, 134104 (2003).CrossRef C. Bungaro, K. M. Rabe, and A. Dal Corso, “First-principles study of lattice instabilities in ferromagnetic Ni2MnGa,” Phys. Rev. B 68, 134104 (2003).CrossRef
13.
go back to reference A. G. Khachaturyan, S. M. Shapiro, and S. Semenovs-kaya, “Adaptive phase formation in martensitic transformation,” Phys. Rev. B 43, 10832 (1991).CrossRef A. G. Khachaturyan, S. M. Shapiro, and S. Semenovs-kaya, “Adaptive phase formation in martensitic transformation,” Phys. Rev. B 43, 10832 (1991).CrossRef
14.
go back to reference S. Kaufmann, U. K. Rößler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, and S. Fähler, “Adaptive modulations of martensites,” Phys. Rev. Lett. 104, 145702 (2010).CrossRef S. Kaufmann, U. K. Rößler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, and S. Fähler, “Adaptive modulations of martensites,” Phys. Rev. Lett. 104, 145702 (2010).CrossRef
15.
go back to reference R. Niemann, U. K. Rößler, M. E. Gruner, O. Heczko, L. Schultz, and S. Fähler, “Reducing the nucleation barrier in magnetocaloric Heusler alloys by nanoindentation,” Adv. Eng. Mater. 14, 562 (2012).CrossRef R. Niemann, U. K. Rößler, M. E. Gruner, O. Heczko, L. Schultz, and S. Fähler, “Reducing the nucleation barrier in magnetocaloric Heusler alloys by nanoindentation,” Adv. Eng. Mater. 14, 562 (2012).CrossRef
16.
go back to reference M. E. Gruner, R. Niemann, P. Entel, R. Pentcheva, U. K. Rößler, K. Nielsch, and S. Fähler, “Modulations in martensitic Heusler alloys originate from nanotwin ordering,” Sci. Rep. 8, 8489 (2018).CrossRef M. E. Gruner, R. Niemann, P. Entel, R. Pentcheva, U. K. Rößler, K. Nielsch, and S. Fähler, “Modulations in martensitic Heusler alloys originate from nanotwin ordering,” Sci. Rep. 8, 8489 (2018).CrossRef
17.
go back to reference P. J. Webster, K. R. A. Ziebeck, S. L. Town, and M. S. Peak, “Magnetic order and phase transformation in Ni2MnGa,” Philos. Mag. 49, 295 (1984).CrossRef P. J. Webster, K. R. A. Ziebeck, S. L. Town, and M. S. Peak, “Magnetic order and phase transformation in Ni2MnGa,” Philos. Mag. 49, 295 (1984).CrossRef
18.
go back to reference V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Shavrov, T. Takagi, S. V. Taskaev, and A. N. Vasiliev, “Phase transitions in Ni2 + xMn1 – xGa with a high Ni excess,” Phys. Rev. B 72, 224408 (2005).CrossRef V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Shavrov, T. Takagi, S. V. Taskaev, and A. N. Vasiliev, “Phase transitions in Ni2 + xMn1 – xGa with a high Ni excess,” Phys. Rev. B 72, 224408 (2005).CrossRef
19.
go back to reference S. R. Barman and A. Chakrabarti, “Comment on “Physical and electronic structure and magnetism of Mn2NiGa: experiment and density-functional theory calculations”,” Phys. Rev. B 77, 176401 (2008).CrossRef S. R. Barman and A. Chakrabarti, “Comment on “Physical and electronic structure and magnetism of Mn2NiGa: experiment and density-functional theory calculations”,” Phys. Rev. B 77, 176401 (2008).CrossRef
20.
go back to reference S. Singh, R. Rawat, S. E. Muthu, S. W. D’Souza, E. Suard, A. Senyshyn, S. Banik, P. Rajput, S. Bhardwaj, A. M. Awasthi, R. Ranjan, S. Arumugam, D. L. Schlagel, T. A. Lograsso, A. Chakrabarti, and S. R. Barman, “Spin-valve-like magnetoresistance in Mn2NiGa at room temperature,” Phys. Rev. Lett. 109, 246601 (2012).CrossRef S. Singh, R. Rawat, S. E. Muthu, S. W. D’Souza, E. Suard, A. Senyshyn, S. Banik, P. Rajput, S. Bhardwaj, A. M. Awasthi, R. Ranjan, S. Arumugam, D. L. Schlagel, T. A. Lograsso, A. Chakrabarti, and S. R. Barman, “Spin-valve-like magnetoresistance in Mn2NiGa at room temperature,” Phys. Rev. Lett. 109, 246601 (2012).CrossRef
21.
go back to reference S. Singh, S. Esakki Muthu, A. Senyshyn, P. Rajput, E. Suard, S. Arumugam, and S. Barman, “Inverse magnetocaloric effect in Mn2NiGa and Mn1.75Ni1.25Ga magnetic shape memory alloys,” Appl. Phys. Lett. 104, 051905 (2014).CrossRef S. Singh, S. Esakki Muthu, A. Senyshyn, P. Rajput, E. Suard, S. Arumugam, and S. Barman, “Inverse magnetocaloric effect in Mn2NiGa and Mn1.75Ni1.25Ga magnetic shape memory alloys,” Appl. Phys. Lett. 104, 051905 (2014).CrossRef
22.
go back to reference S. Singh, M. Maniraj, S. Dsouza, R. Ranjan, and S. Barman, “Structural transformations in Mn2NiGa due to residual stress,” Appl. Phys. Lett. 96, 081904 (2010).CrossRef S. Singh, M. Maniraj, S. Dsouza, R. Ranjan, and S. Barman, “Structural transformations in Mn2NiGa due to residual stress,” Appl. Phys. Lett. 96, 081904 (2010).CrossRef
23.
go back to reference P. J. Brown, T. Kanomata, K. Neumann, K. U. Neumann, B. Ouladdiaf, A. Sheikh, and K. R. A. Ziebeck, “Atomic and magnetic order in the shape memory alloy Mn2NiGa,” J. Phys.: Condens. Matter 22, 506001 (2010). P. J. Brown, T. Kanomata, K. Neumann, K. U. Neumann, B. Ouladdiaf, A. Sheikh, and K. R. A. Ziebeck, “Atomic and magnetic order in the shape memory alloy Mn2NiGa,” J. Phys.: Condens. Matter 22, 506001 (2010).
24.
go back to reference S. Paul and S. J. Ghosh, “First-principles investigations of the electronic structure and properties related to shape-memory behavior in Mn2NiX (X  =  Al, Ga, In, Sn) alloys,” Appl. Phys. Lett. 110, 063523 (2011). S. Paul and S. J. Ghosh, “First-principles investigations of the electronic structure and properties related to shape-memory behavior in Mn2NiX (X  =  Al, Ga, In, Sn) alloys,” Appl. Phys. Lett. 110, 063523 (2011).
25.
go back to reference V. V. Sokolovskiy, M. A. Zagrebin, Y. A. Sokolovskaya, and V. D. Buchelnikov, “Structural and magnetic properties of Mn2NiZ (Z = Ga, In, Sn, Sb) Heusler alloys from ab initio calculations,” Solid State Phenom. 233, 229 (2015).CrossRef V. V. Sokolovskiy, M. A. Zagrebin, Y. A. Sokolovskaya, and V. D. Buchelnikov, “Structural and magnetic properties of Mn2NiZ (Z = Ga, In, Sn, Sb) Heusler alloys from ab initio calculations,” Solid State Phenom. 233, 229 (2015).CrossRef
26.
go back to reference A. P. Kamantsev, Yu. S. Koshkid’ko, E. O. Bykov, V. S. Kalashnikov, A. V. Koshelev, A. V. Mashirov, I. I. Musabirov, M. A. Paukov, and V. V. Sokolovskiy, “Magnetocaloric and shape memory effects in the Mn2NiGa Heusler alloy,” Phys. Solid State 62, 815–820 (2020).CrossRef A. P. Kamantsev, Yu. S. Koshkid’ko, E. O. Bykov, V. S. Kalashnikov, A. V. Koshelev, A. V. Mashirov, I. I. Musabirov, M. A. Paukov, and V. V. Sokolovskiy, “Magnetocaloric and shape memory effects in the Mn2NiGa Heusler alloy,” Phys. Solid State 62, 815–820 (2020).CrossRef
27.
go back to reference J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. B 77, 3865 (1996). J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. B 77, 3865 (1996).
28.
go back to reference J. Sun, A. Ruzsinszky, and J. P. Perdew, “Strongly constrained and appropriately normed semilocal density functional,” Phys. Rev. B 115, 036402 (2015). J. Sun, A. Ruzsinszky, and J. P. Perdew, “Strongly constrained and appropriately normed semilocal density functional,” Phys. Rev. B 115, 036402 (2015).
29.
go back to reference Y. Zhang, J. Sun, J. P. Perdew, and X. Wu, “Comparative first-principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA,” Phys. Rev. B 96, 035143 (2017).CrossRef Y. Zhang, J. Sun, J. P. Perdew, and X. Wu, “Comparative first-principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA,” Phys. Rev. B 96, 035143 (2017).CrossRef
30.
go back to reference G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1996).CrossRef G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1996).CrossRef
31.
go back to reference G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758 (1999).CrossRef G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758 (1999).CrossRef
Metadata
Title
Exchange Correlation Effects in Modulated Martensitic Structures of the Mn2NiGa Alloy
Authors
K. R. Erager
D. R. Baigutlin
V. V. Sokolovskiy
V. D. Buchelnikov
Publication date
01-04-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 4/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22040044

Other articles of this Issue 4/2022

Physics of Metals and Metallography 4/2022 Go to the issue

ELECTRICAL AND MAGNETIC PROPERTIES

Magnetocaloric Effect in Metals and Alloys