Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

Existence and Coexistence in First-Passage Percolation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider first-passage percolation with i.i.d. non-negative weights coming from some continuous distribution under a moment condition. We review recent results in the study of geodesics in first-passage percolation and study their implications for the multi-type Richardson model. In two dimensions this establishes a dual relation between the existence of infinite geodesics and coexistence among competing types. The argument amounts to making precise the heuristic that infinite geodesics can be thought of as ‘highways to infinity’. We explain the limitations of the current techniques by presenting a partial result in dimensions d > 2.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Consider the sequence of finite geodesics between the origin and n e 1, where e 1 denotes the first coordinate vector. Since the number of edges that connect to the origin is finite, one of them must be traversed for infinitely many n. Repeating the argument results in an infinite path which by construction is a geodesic.
 
2
This will be referred to as having unique passage times.
 
Literature
1.
go back to reference Ahlberg, D., Hoffman, C.: Random coalescing geodesics in first-passage percolation. Preprint, see arXiv: 1609.02447 Ahlberg, D., Hoffman, C.: Random coalescing geodesics in first-passage percolation. Preprint, see arXiv: 1609.02447
2.
go back to reference Alberts, T., Rassoul-Agha, F., Simper, M.: Busemann functions and semi-infinite O’Connell–Yor polymers. Bernoulli 26(3), 1927–1955 (2020)MathSciNetCrossRef Alberts, T., Rassoul-Agha, F., Simper, M.: Busemann functions and semi-infinite O’Connell–Yor polymers. Bernoulli 26(3), 1927–1955 (2020)MathSciNetCrossRef
3.
go back to reference Alexander, K.S.: Geodesics, bigeodesics, and coalescence in first passage percolation in general dimension. Preprint, see arXiv: 2001.08736 Alexander, K.S.: Geodesics, bigeodesics, and coalescence in first passage percolation in general dimension. Preprint, see arXiv: 2001.08736
4.
go back to reference Auffinger, A., Damron, M., Hanson, J.: 50 Years of First-Passage Percolation, Volume 68 of University Lecture Series. American Mathematical Society, Providence (2017)CrossRef Auffinger, A., Damron, M., Hanson, J.: 50 Years of First-Passage Percolation, Volume 68 of University Lecture Series. American Mathematical Society, Providence (2017)CrossRef
5.
go back to reference Bakhtin, Y., Cator, E., Khanin, K.: Space-time stationary solutions for the Burgers equation. J. Am. Math. Soc. 27(1), 193–238 (2014)MathSciNetCrossRef Bakhtin, Y., Cator, E., Khanin, K.: Space-time stationary solutions for the Burgers equation. J. Am. Math. Soc. 27(1), 193–238 (2014)MathSciNetCrossRef
6.
go back to reference Brito, G., Damron, M., Hanson, J.: Absence of backward infinite paths for first-passage percolation in arbitrary dimension. Preprint, see arXiv: 2003.03367 Brito, G., Damron, M., Hanson, J.: Absence of backward infinite paths for first-passage percolation in arbitrary dimension. Preprint, see arXiv: 2003.03367
7.
go back to reference Busemann, H.: The Geometry of Geodesics. Academic, New York (1955)MATH Busemann, H.: The Geometry of Geodesics. Academic, New York (1955)MATH
8.
go back to reference Cator, E., Pimentel, L.P.R.: Busemann functions and equilibrium measures in last passage percolation models. Probab. Theory Relat. Fields 154(1–2), 89–125 (2012)MathSciNetCrossRef Cator, E., Pimentel, L.P.R.: Busemann functions and equilibrium measures in last passage percolation models. Probab. Theory Relat. Fields 154(1–2), 89–125 (2012)MathSciNetCrossRef
9.
go back to reference Cox, J.T., Durrett, R.: Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Probab. 9(4), 583–603 (1981)MathSciNetCrossRef Cox, J.T., Durrett, R.: Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Probab. 9(4), 583–603 (1981)MathSciNetCrossRef
10.
go back to reference Damron, M., Hanson, J.: Busemann functions and infinite geodesics in two-dimensional first-passage percolation. Commun. Math. Phys. 325(3), 917–963 (2014)MathSciNetCrossRef Damron, M., Hanson, J.: Busemann functions and infinite geodesics in two-dimensional first-passage percolation. Commun. Math. Phys. 325(3), 917–963 (2014)MathSciNetCrossRef
11.
12.
go back to reference Damron, M., Hochman, M.: Examples of nonpolygonal limit shapes in i.i.d. first-passage percolation and infinite coexistence in spatial growth models. Ann. Appl. Probab. 23(3), 1074–1085 (2013) Damron, M., Hochman, M.: Examples of nonpolygonal limit shapes in i.i.d. first-passage percolation and infinite coexistence in spatial growth models. Ann. Appl. Probab. 23(3), 1074–1085 (2013)
13.
go back to reference Garet, O., Marchand, R.: Coexistence in two-type first-passage percolation models. Ann. Appl. Probab. 15(1A), 298–330 (2005)MathSciNetCrossRef Garet, O., Marchand, R.: Coexistence in two-type first-passage percolation models. Ann. Appl. Probab. 15(1A), 298–330 (2005)MathSciNetCrossRef
14.
go back to reference Georgiou, N., Rassoul-Agha, F., Seppäläinen, T.: Variational formulas and cocycle solutions for directed polymer and percolation models. Commun. Math. Phys. 346(2), 741–779 (2016)MathSciNetCrossRef Georgiou, N., Rassoul-Agha, F., Seppäläinen, T.: Variational formulas and cocycle solutions for directed polymer and percolation models. Commun. Math. Phys. 346(2), 741–779 (2016)MathSciNetCrossRef
15.
go back to reference Georgiou, N., Rassoul-Agha, F., Seppäläinen, T.: Geodesics and the competition interface for the corner growth model. Probab. Theory Relat. Fields 169(1–2), 223–255 (2017)MathSciNetCrossRef Georgiou, N., Rassoul-Agha, F., Seppäläinen, T.: Geodesics and the competition interface for the corner growth model. Probab. Theory Relat. Fields 169(1–2), 223–255 (2017)MathSciNetCrossRef
16.
go back to reference Georgiou, N., Rassoul-Agha, F., Seppäläinen, T.: Stationary cocycles and Busemann functions for the corner growth model. Probab. Theory Relat. Fields 169(1–2), 177–222 (2017)MathSciNetCrossRef Georgiou, N., Rassoul-Agha, F., Seppäläinen, T.: Stationary cocycles and Busemann functions for the corner growth model. Probab. Theory Relat. Fields 169(1–2), 177–222 (2017)MathSciNetCrossRef
17.
go back to reference Häggström, O., Pemantle, R.: First passage percolation and a model for competing spatial growth. J. Appl. Probab. 35(3), 683–692 (1998)MathSciNetCrossRef Häggström, O., Pemantle, R.: First passage percolation and a model for competing spatial growth. J. Appl. Probab. 35(3), 683–692 (1998)MathSciNetCrossRef
18.
go back to reference Hammersley, J.M., Welsh, D.J.A.: First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In: Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif, pp. 61–110. Springer, New York (1965) Hammersley, J.M., Welsh, D.J.A.: First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In: Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif, pp. 61–110. Springer, New York (1965)
19.
go back to reference Hoffman, C.: Coexistence for Richardson type competing spatial growth models. Ann. Appl. Probab. 15(1B), 739–747 (2005)MathSciNetCrossRef Hoffman, C.: Coexistence for Richardson type competing spatial growth models. Ann. Appl. Probab. 15(1B), 739–747 (2005)MathSciNetCrossRef
21.
go back to reference Howard, C.D.: Models of first-passage percolation. In: Probability on Discrete Structures, Volume 110 of Encyclopaedia Math. Sci., pp. 125–173. Springer, Berlin (2004) Howard, C.D.: Models of first-passage percolation. In: Probability on Discrete Structures, Volume 110 of Encyclopaedia Math. Sci., pp. 125–173. Springer, Berlin (2004)
22.
go back to reference Howard, C.D., Newman, C.M.: Geodesics and spanning trees for Euclidean first-passage percolation. Ann. Probab. 29(2), 577–623 (2001)MathSciNetCrossRef Howard, C.D., Newman, C.M.: Geodesics and spanning trees for Euclidean first-passage percolation. Ann. Probab. 29(2), 577–623 (2001)MathSciNetCrossRef
23.
go back to reference Kesten, H.: Aspects of first passage percolation. In: École d’été de probabilités de Saint-Flour, XIV—1984, Volume 1180 of Lecture Notes in Math., pp. 125–264. Springer, Berlin (1986) Kesten, H.: Aspects of first passage percolation. In: École d’été de probabilités de Saint-Flour, XIV—1984, Volume 1180 of Lecture Notes in Math., pp. 125–264. Springer, Berlin (1986)
24.
go back to reference Kingman, J.F.C.: The ergodic theory of subadditive stochastic processes. J. R. Stat. Soc. Ser. B 30, 499–510 (1968)MathSciNetMATH Kingman, J.F.C.: The ergodic theory of subadditive stochastic processes. J. R. Stat. Soc. Ser. B 30, 499–510 (1968)MathSciNetMATH
25.
go back to reference Licea, C., Newman, C.M.: Geodesics in two-dimensional first-passage percolation. Ann. Probab. 24(1), 399–410 (1996)MathSciNetCrossRef Licea, C., Newman, C.M.: Geodesics in two-dimensional first-passage percolation. Ann. Probab. 24(1), 399–410 (1996)MathSciNetCrossRef
26.
go back to reference Licea, C., Newman, C.M., Piza, M.S.T.: Superdiffusivity in first-passage percolation. Probab. Theory Relat. Fields 106(4), 559–591 (1996)MathSciNetCrossRef Licea, C., Newman, C.M., Piza, M.S.T.: Superdiffusivity in first-passage percolation. Probab. Theory Relat. Fields 106(4), 559–591 (1996)MathSciNetCrossRef
27.
go back to reference Nakajima, S.: Ergodicity of the number of infinite geodesics originating from zero. Preprint, see arXiv: 1807.05900 Nakajima, S.: Ergodicity of the number of infinite geodesics originating from zero. Preprint, see arXiv: 1807.05900
28.
go back to reference Newman, C.M.: A surface view of first-passage percolation. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pp. 1017–1023. Birkhäuser, Basel (1995) Newman, C.M.: A surface view of first-passage percolation. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pp. 1017–1023. Birkhäuser, Basel (1995)
29.
go back to reference Newman, C.M., Piza, M.S.T.: Divergence of shape fluctuations in two dimensions. Ann. Probab. 23(3), 977–1005 (1995)MathSciNetCrossRef Newman, C.M., Piza, M.S.T.: Divergence of shape fluctuations in two dimensions. Ann. Probab. 23(3), 977–1005 (1995)MathSciNetCrossRef
31.
go back to reference Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton (1970) Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton (1970)
32.
go back to reference Smythe, R.T., Wierman, J.C.: First-Passage Percolation on the Square Lattice, Volume 671 of Lecture Notes in Mathematics. Springer, Berlin (1978)CrossRef Smythe, R.T., Wierman, J.C.: First-Passage Percolation on the Square Lattice, Volume 671 of Lecture Notes in Mathematics. Springer, Berlin (1978)CrossRef
Metadata
Title
Existence and Coexistence in First-Passage Percolation
Author
Daniel Ahlberg
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-60754-8_1