Skip to main content
Top

2014 | OriginalPaper | Chapter

7. Exit Problems for Diffusion Processes and Applications

Author : Grigorios A. Pavliotis

Published in: Stochastic Processes and Applications

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, we develop techniques for calculating the statistics of the time that it takes for a diffusion process in a bounded domain to reach the boundary of the domain. We then use this formalism to study the problem of Brownian motion in a bistable potential. Applications such as stochastic resonance and the modeling of Brownian motors are also presented. In Sect. 7.1, we motivate the techniques that we will develop in this chapter by looking at the problem of Brownian motion in bistable potentials. In Sect. 7.2, we obtain a boundary value problem for the mean exit time of a diffusion process from a domain. We then use this formalism in Sect. 7.3 to calculate the escape rate of a Brownian particle from a potential well. The phenomenon of stochastic resonance is investigated in Sect. 7.4. Brownian motors are studied in Sect. 7.5. Bibliographical remarks and exercises can be found in Sects. 7.6 and 7.7, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In other words, the integral \(\int _{-\infty }^{a}e^{-\beta V (y)}\,dy\) can be neglected.
 
2
The boundary conditions are reflecting at \(x = -L\) and absorbing at x = 0, whence (7.16) is the correct formula to use.
 
3
We assume, without loss of generality, that in the absence of the time-dependent forcing A 0 = 0, we have that X t is of mean zero, \(\int x\rho _{s}(x)\,dx = 0\). This assumption is satisfied for the symmetric bistable potential.
 
4
Note that although in this figure, we have β −1 ∈ [0, 1], formula (7.45) is actually valid only for β ≫ 1.
 
5
Equivalently, we can solve the stationary Fokker–Planck equation (6.​165) as follows: We can consider the equation separately in the intervals [0, λ 1] and [λ 1, 1]. In these two intervals, the equation becomes a second-order differential equation with constant coefficients that we can solve. Using, then, the periodic boundary conditions, the normalization condition, and a continuity condition at x = λ 1, we can calculate the invariant distribution and then substitute it into (6.​169) to calculate the effective drift.
 
6
The stochastic process X t does not necessarily denote the position of a Brownian particle. We will, however, refer to X t as the particle position in the sequel.
 
7
We use the notation \(X_{t}^{x,y,f}\) for the solution of (7.56) to emphasize its dependence on the initial conditions for X t , f(t), y(t). Also, in order to avoid problems with initial layers, we are assuming that ϕ depends explicitly only on X t ; the dependence on y(t), f(t) comes through (7.56).
 
8
Compare this with the rescaling 6.162. In contrast to Sect. 6.​6.​2, here we will calculate the drift and diffusion coefficients in two steps.
 
9
Alternatively, we could introduce the auxiliary variable \(z = \frac{x} {\varepsilon }\), write the SDE (7.56) in terms of x, y, z, and f, and then proceed with an appropriate power series expansion. This is what we did in Sect. 6.​6
 
10
In order to be more specific on the boundary conditions with respect to f and y, we need to specify their generator. For example, when y(t) is the Ornstein–Uhlenbeck process, the boundary conditions in y are that ρ should decay sufficiently fast as \(\vert y\vert \rightarrow +\infty\).
 
11
More generally, the SNR is essentially the ratio between the strengths of the singular and continuous parts of the power spectrum:
$$\displaystyle{\mbox{ SNR} = 2\frac{\lim _{\varDelta \omega \rightarrow 0}\int _{\omega _{0}-\varDelta \omega }^{\omega _{0}+\varDelta \omega }S(\omega )\,d\omega } {S_{N}(\omega )}.}$$
 
Literature
[14]
go back to reference R. Bartussek, P. Reimann, and P. Hanggi. Precise numerics versus theory for correlation ratchets. Phys. Rev. Let., 76(7):1166–1169, 1996.CrossRef R. Bartussek, P. Reimann, and P. Hanggi. Precise numerics versus theory for correlation ratchets. Phys. Rev. Let., 76(7):1166–1169, 1996.CrossRef
[17]
go back to reference A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic analysis for periodic structures, volume 5 of Studies in Mathematics and Its Applications. North-Holland Publishing Co., Amsterdam, 1978. A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic analysis for periodic structures, volume 5 of Studies in Mathematics and Its Applications. North-Holland Publishing Co., Amsterdam, 1978.
[18]
go back to reference R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. A theory of stochastic resonance in climatic change. SIAM J. Appl. Math., 43(3):565–478, 1983.CrossRefMathSciNet R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. A theory of stochastic resonance in climatic change. SIAM J. Appl. Math., 43(3):565–478, 1983.CrossRefMathSciNet
[19]
[20]
go back to reference N. Berglund and B. Gentz. A sample-paths approach to noise-induced synchronization: stochastic resonance in a double-well potential. Ann. Appl. Probab., 12(4):1419–1470, 2002.CrossRefMATHMathSciNet N. Berglund and B. Gentz. A sample-paths approach to noise-induced synchronization: stochastic resonance in a double-well potential. Ann. Appl. Probab., 12(4):1419–1470, 2002.CrossRefMATHMathSciNet
[21]
go back to reference N. Berglund and B. Gentz. Noise-induced phenomena in slow-fast dynamical systems. Probability and Its Applications (New York). Springer-Verlag London Ltd., London, 2006. A sample-paths approach. N. Berglund and B. Gentz. Noise-induced phenomena in slow-fast dynamical systems. Probability and Its Applications (New York). Springer-Verlag London Ltd., London, 2006. A sample-paths approach.
[31]
go back to reference C. Bustamante, D. Keller, and G. Oster. The physics of molecular motors. Acc. Chem. res., 34:412–420, 2001.CrossRef C. Bustamante, D. Keller, and G. Oster. The physics of molecular motors. Acc. Chem. res., 34:412–420, 2001.CrossRef
[37]
go back to reference P. Collet and S. Martínez. Asymptotic velocity of one dimensional diffusions with periodic drift. J. Math. Biol., 56(6):765–792, 2008.CrossRefMATHMathSciNet P. Collet and S. Martínez. Asymptotic velocity of one dimensional diffusions with periodic drift. J. Math. Biol., 56(6):765–792, 2008.CrossRefMATHMathSciNet
[46]
go back to reference C. R. Doering, W. Horsthemke, and J. Riordan. Nonequilibrium fluctuation-induced transport. Phys. Rev. Let., 72(19):2984–2987, 1994.CrossRef C. R. Doering, W. Horsthemke, and J. Riordan. Nonequilibrium fluctuation-induced transport. Phys. Rev. Let., 72(19):2984–2987, 1994.CrossRef
[66]
go back to reference L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni. Stochastic resonance. Reviews of Modern Physics, 70(1):223–287, 1998.CrossRef L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni. Stochastic resonance. Reviews of Modern Physics, 70(1):223–287, 1998.CrossRef
[68]
go back to reference C. W. Gardiner. Handbook of stochastic methods. Springer-Verlag, Berlin, second edition, 1985. For physics, chemistry and the natural sciences. C. W. Gardiner. Handbook of stochastic methods. Springer-Verlag, Berlin, second edition, 1985. For physics, chemistry and the natural sciences.
[73]
go back to reference T. Goudon and F. Poupaud. Homogenization of transport equations: weak mean field approximation. SIAM J. Math. Anal., 36(3):856–881 (electronic), 2004/05. T. Goudon and F. Poupaud. Homogenization of transport equations: weak mean field approximation. SIAM J. Math. Anal., 36(3):856–881 (electronic), 2004/05.
[82]
go back to reference P. Hanggi, P. Talkner, and M. Borkovec. Reaction-rate theory: fifty years after Kramers. Rev. Modern Phys., 62(2):251–341, 1990.CrossRefMathSciNet P. Hanggi, P. Talkner, and M. Borkovec. Reaction-rate theory: fifty years after Kramers. Rev. Modern Phys., 62(2):251–341, 1990.CrossRefMathSciNet
[85]
go back to reference B. Helffer and F. Nier. Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, volume 1862 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2005. B. Helffer and F. Nier. Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, volume 1862 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2005.
[87]
go back to reference S. Herrmann, P. Imkeller, and I. Pavlyukevich. Two mathematical approaches to stochastic resonance. In Interacting stochastic systems, pages 327–351. Springer, Berlin, 2005. S. Herrmann, P. Imkeller, and I. Pavlyukevich. Two mathematical approaches to stochastic resonance. In Interacting stochastic systems, pages 327–351. Springer, Berlin, 2005.
[91]
[110]
go back to reference P. Jung and P. Hanggi. Stochastic nonlinear dynamics modulated by external periodic forces. Europhysics Letters, 8(6):505–510, 1989.CrossRef P. Jung and P. Hanggi. Stochastic nonlinear dynamics modulated by external periodic forces. Europhysics Letters, 8(6):505–510, 1989.CrossRef
[114]
go back to reference J. Kevorkian and J. D. Cole. Multiple scale and singular perturbation methods, volume 114 of Applied Mathematical Sciences. Springer-Verlag, New York, 1996. J. Kevorkian and J. D. Cole. Multiple scale and singular perturbation methods, volume 114 of Applied Mathematical Sciences. Springer-Verlag, New York, 1996.
[122]
[128]
go back to reference P. Kuchment. Floquet theory for partial differential equations, volume 60 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 1993. P. Kuchment. Floquet theory for partial differential equations, volume 60 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 1993.
[151]
go back to reference M. O. Magnasco. Forced thermal ratchets. Phys. Rev. Let., 71(10):1477–1481, 1993.CrossRef M. O. Magnasco. Forced thermal ratchets. Phys. Rev. Let., 71(10):1477–1481, 1993.CrossRef
[156]
go back to reference B. J. Matkowsky and Z. Schuss. Eigenvalues of the Fokker-Planck operator and the approach to equilibrium for diffusions in potential fields. SIAM J. Appl. Math., 40(2):242–254, 1981.CrossRefMATHMathSciNet B. J. Matkowsky and Z. Schuss. Eigenvalues of the Fokker-Planck operator and the approach to equilibrium for diffusions in potential fields. SIAM J. Appl. Math., 40(2):242–254, 1981.CrossRefMATHMathSciNet
[157]
go back to reference B. J. Matkowsky, Z. Schuss, and E. Ben-Jacob. A singular perturbation approach to Kramers’ diffusion problem. SIAM J. Appl. Math., 42(4): 835–849, 1982.CrossRefMATHMathSciNet B. J. Matkowsky, Z. Schuss, and E. Ben-Jacob. A singular perturbation approach to Kramers’ diffusion problem. SIAM J. Appl. Math., 42(4): 835–849, 1982.CrossRefMATHMathSciNet
[158]
go back to reference B. J. Matkowsky, Z. Schuss, and C. Tier. Uniform expansion of the transition rate in Kramers’ problem. J. Statist. Phys., 35(3–4):443–456, 1984.CrossRefMathSciNet B. J. Matkowsky, Z. Schuss, and C. Tier. Uniform expansion of the transition rate in Kramers’ problem. J. Statist. Phys., 35(3–4):443–456, 1984.CrossRefMathSciNet
[159]
go back to reference J. C. Mattingly and A. M. Stuart. Geometric ergodicity of some hypo-elliptic diffusions for particle motions. Markov Processes and Related Fields, 8(2):199–214, 2002.MATHMathSciNet J. C. Mattingly and A. M. Stuart. Geometric ergodicity of some hypo-elliptic diffusions for particle motions. Markov Processes and Related Fields, 8(2):199–214, 2002.MATHMathSciNet
[162]
go back to reference V. I. Melnikov. The Kramers problem—50 years of development. Physics Reports, 209(1–2):1–71, 1991.CrossRef V. I. Melnikov. The Kramers problem—50 years of development. Physics Reports, 209(1–2):1–71, 1991.CrossRef
[163]
go back to reference V. I. Melnikov and S. V. Meshkov. Theory of activated rate-processes—exact solution of the Kramers problem. J. Chem. Phys., 85(2):1018–1027, JUL 15 1986. V. I. Melnikov and S. V. Meshkov. Theory of activated rate-processes—exact solution of the Kramers problem. J. Chem. Phys., 85(2):1018–1027, JUL 15 1986.
[173]
[174]
go back to reference C. Nicolis. Long-term climatic transitions and stochastic resonance. Journal of Statistical Physics, 70(1–2):3–14, jan 1993. C. Nicolis. Long-term climatic transitions and stochastic resonance. Journal of Statistical Physics, 70(1–2):3–14, jan 1993.
[175]
go back to reference C. Nicolis and G. Nicolis. Stochastic aspects of climatic transitions—additive fluctuations. Tellus, 33(3):225–234, 1981.CrossRefMathSciNet C. Nicolis and G. Nicolis. Stochastic aspects of climatic transitions—additive fluctuations. Tellus, 33(3):225–234, 1981.CrossRefMathSciNet
[184]
go back to reference G. A. Pavliotis. A multiscale approach to Brownian motors. Phys. Lett. A, 344:331–345, 2005.CrossRefMATH G. A. Pavliotis. A multiscale approach to Brownian motors. Phys. Lett. A, 344:331–345, 2005.CrossRefMATH
[194]
go back to reference M. Reed and B. Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press, New York, 1978. M. Reed and B. Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press, New York, 1978.
[216]
go back to reference Z. Schuss. Singular perturbation methods in stochastic differential equations of mathematical physics. SIAM Review, 22(2):119–155, 1980.CrossRefMATHMathSciNet Z. Schuss. Singular perturbation methods in stochastic differential equations of mathematical physics. SIAM Review, 22(2):119–155, 1980.CrossRefMATHMathSciNet
[246]
go back to reference R. Zwanzig. Nonequilibrium statistical mechanics. Oxford University Press, New York, 2001.MATH R. Zwanzig. Nonequilibrium statistical mechanics. Oxford University Press, New York, 2001.MATH
Metadata
Title
Exit Problems for Diffusion Processes and Applications
Author
Grigorios A. Pavliotis
Copyright Year
2014
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-1323-7_7