Skip to main content
Top

2025 | OriginalPaper | Chapter

Expanding the Scope: Inductive Knowledge Graph Reasoning with Multi-starting Progressive Propagation

Authors : Zhoutian Shao, Yuanning Cui, Wei Hu

Published in: The Semantic Web – ISWC 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Knowledge graphs (KGs) are widely acknowledged as incomplete, and new entities are constantly emerging in the real world. Inductive KG reasoning aims to predict missing facts for these new entities. Among existing models, graph neural networks (GNNs) based ones have shown promising performance for this task. However, they are still challenged by inefficient message propagation due to the distance and scalability issues. In this paper, we propose a new inductive KG reasoning model, MStar, by leveraging conditional message passing neural networks (C-MPNNs). Our key insight is to select multiple query-specific starting entities to expand the scope of progressive propagation. To propagate query-related messages to a farther area within limited steps, we subsequently design a highway layer to propagate information toward these selected starting entities. Moreover, we introduce a training strategy called LinkVerify to mitigate the impact of noisy training samples. Experimental results validate that MStar achieves superior performance compared with state-of-the-art models, especially for distant entities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bollacker, K.D., Evans, C., Paritosh, P.K., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proc. of SIGMOD, pp. 1247–1250 (2008) Bollacker, K.D., Evans, C., Paritosh, P.K., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proc. of SIGMOD, pp. 1247–1250 (2008)
2.
go back to reference Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proc. of NeurIPS, vol. 26, pp. 2787–2795 (2013) Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proc. of NeurIPS, vol. 26, pp. 2787–2795 (2013)
3.
go back to reference Chen, J., He, H., Wu, F., Wang, J.: Topology-aware correlations between relations for inductive link prediction in knowledge graphs. In: Proc. of AAAI, vol. 35, pp. 6271–6278 (2021) Chen, J., He, H., Wu, F., Wang, J.: Topology-aware correlations between relations for inductive link prediction in knowledge graphs. In: Proc. of AAAI, vol. 35, pp. 6271–6278 (2021)
4.
go back to reference Chen, X., Jia, S., Xiang, Y.: A review: Knowledge reasoning over knowledge graph. Expert Syst. Appl. 141, 112948 (2020)CrossRef Chen, X., Jia, S., Xiang, Y.: A review: Knowledge reasoning over knowledge graph. Expert Syst. Appl. 141, 112948 (2020)CrossRef
5.
go back to reference Chen, Z., Wang, X., Wang, C., Li, Z.: PosKHG: a position-aware knowledge hypergraph model for link prediction. Data Sci. Eng. 8, 135–145 (2023)CrossRef Chen, Z., Wang, X., Wang, C., Li, Z.: PosKHG: a position-aware knowledge hypergraph model for link prediction. Data Sci. Eng. 8, 135–145 (2023)CrossRef
6.
go back to reference Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proc. of AAAI. vol. 32, pp. 1811–1818 (2018) Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proc. of AAAI. vol. 32, pp. 1811–1818 (2018)
7.
go back to reference Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proc. of ICML, vol. 70, pp. 1263–1272 (2017) Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proc. of ICML, vol. 70, pp. 1263–1272 (2017)
8.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc. of CVPR, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc. of CVPR, pp. 770–778 (2016)
9.
go back to reference Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proc. of CVPR, pp. 2261–2269 (2017) Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proc. of CVPR, pp. 2261–2269 (2017)
10.
go back to reference Huang, X., Romero, M., Ceylan, İ.İ., Barceló, P.: A theory of link prediction via relational Weisfeiler-Leman on knowledge graphs. In: Proc. of NeurIPS, vol. 36, pp. 19714–19748 (2023) Huang, X., Romero, M., Ceylan, İ.İ., Barceló, P.: A theory of link prediction via relational Weisfeiler-Leman on knowledge graphs. In: Proc. of NeurIPS, vol. 36, pp. 19714–19748 (2023)
11.
go back to reference Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Trans. Neural Networks Learn. Syst. 33, 494–514 (2022)MathSciNetCrossRef Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Trans. Neural Networks Learn. Syst. 33, 494–514 (2022)MathSciNetCrossRef
12.
go back to reference Jia, T., Yang, Y., Lu, X., Zhu, Q., Yang, K., Zhou, X.: Link prediction based on tensor decomposition for the knowledge graph of COVID-19 antiviral drug. Data Intell. 4, 134–148 (2022)CrossRef Jia, T., Yang, Y., Lu, X., Zhu, Q., Yang, K., Zhou, X.: Link prediction based on tensor decomposition for the knowledge graph of COVID-19 antiviral drug. Data Intell. 4, 134–148 (2022)CrossRef
13.
go back to reference Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proc. of ICLR, pp. 1–13 (2015) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proc. of ICLR, pp. 1–13 (2015)
14.
go back to reference Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowledge base completion. In: Proc. of ICML, vol. 80, pp. 2869–2878 (2018) Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowledge base completion. In: Proc. of ICML, vol. 80, pp. 2869–2878 (2018)
15.
go back to reference Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web 6, 167–195 (2015)CrossRef Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web 6, 167–195 (2015)CrossRef
16.
go back to reference Lin, Q., et al.: Incorporating context graph with logical reasoning for inductive relation prediction. In: Proc. of SIGIR, pp. 893–903 (2022) Lin, Q., et al.: Incorporating context graph with logical reasoning for inductive relation prediction. In: Proc. of SIGIR, pp. 893–903 (2022)
17.
go back to reference Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proc. of AAAI, vol. 29, pp. 2181–2187 (2015) Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proc. of AAAI, vol. 29, pp. 2181–2187 (2015)
18.
go back to reference Mai, S., Zheng, S., Yang, Y., Hu, H.: Communicative message passing for inductive relation reasoning. In: Proc. of AAAI, vol. 35, pp. 4294–4302 (2021) Mai, S., Zheng, S., Yang, Y., Hu, H.: Communicative message passing for inductive relation reasoning. In: Proc. of AAAI, vol. 35, pp. 4294–4302 (2021)
19.
go back to reference Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule learning for knowledge graph completion. In: Proc. of IJCAI, pp. 3137–3143 (2019) Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule learning for knowledge graph completion. In: Proc. of IJCAI, pp. 3137–3143 (2019)
20.
go back to reference Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuckenschmidt, H.: Fine-grained evaluation of rule- and embedding-based systems for knowledge graph completion. In: Proc. of ISWC, vol. 11136, pp. 3–20 (2018) Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuckenschmidt, H.: Fine-grained evaluation of rule- and embedding-based systems for knowledge graph completion. In: Proc. of ISWC, vol. 11136, pp. 3–20 (2018)
21.
go back to reference Mitchell, T.M., et al.: Never-ending learning. Commun. ACM 61, 103–115 (2018) Mitchell, T.M., et al.: Never-ending learning. Commun. ACM 61, 103–115 (2018)
22.
go back to reference Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: Proc. of ICML, pp. 809–816 (2011) Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: Proc. of ICML, pp. 809–816 (2011)
23.
go back to reference Pan, Y., Liu, J., Zhang, L., Zhao, T., Lin, Q., Hu, X., Wang, Q.: Inductive relation prediction with logical reasoning using contrastive representations. In: Proc. of EMNLP, pp. 4261–4274 (2022) Pan, Y., Liu, J., Zhang, L., Zhao, T., Lin, Q., Hu, X., Wang, Q.: Inductive relation prediction with logical reasoning using contrastive representations. In: Proc. of EMNLP, pp. 4261–4274 (2022)
24.
go back to reference Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Proc. of NeurIPS, vol. 32, pp. 8024–8035 (2019) Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Proc. of NeurIPS, vol. 32, pp. 8024–8035 (2019)
25.
go back to reference Qiu, H., Zhang, Y., Li, Y., Yao, Q.: Logical expressiveness of graph neural network for knowledge graph reasoning. In: Proc. of ICLR, pp. 1–21 (2020) Qiu, H., Zhang, Y., Li, Y., Yao, Q.: Logical expressiveness of graph neural network for knowledge graph reasoning. In: Proc. of ICLR, pp. 1–21 (2020)
26.
go back to reference Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Discov. Data 15, 14:1–14:49 (2021) Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Discov. Data 15, 14:1–14:49 (2021)
27.
go back to reference Sadeghian, A., Armandpour, M., Ding, P., Wang, D.Z.: DRUM: End-to-end differentiable rule mining on knowledge graphs. In: Proc. of NeurIPS, vol. 32, pp. 15321–15331 (2019) Sadeghian, A., Armandpour, M., Ding, P., Wang, D.Z.: DRUM: End-to-end differentiable rule mining on knowledge graphs. In: Proc. of NeurIPS, vol. 32, pp. 15321–15331 (2019)
28.
go back to reference Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Proc. of ESWC, vol. 10843, pp. 593–607 (2018) Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Proc. of ESWC, vol. 10843, pp. 593–607 (2018)
29.
go back to reference Sun, Z., Deng, Z., Nie, J., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. In: Proc. of ICLR, pp. 1–18 (2019) Sun, Z., Deng, Z., Nie, J., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. In: Proc. of ICLR, pp. 1–18 (2019)
30.
go back to reference Sun, Z., Vashishth, S., Sanyal, S., Talukdar, P.P., Yang, Y.: A re-evaluation of knowledge graph completion methods. In: Proc. of ACL, pp. 5516–5522 (2020) Sun, Z., Vashishth, S., Sanyal, S., Talukdar, P.P., Yang, Y.: A re-evaluation of knowledge graph completion methods. In: Proc. of ACL, pp. 5516–5522 (2020)
31.
go back to reference Szegedy, C., et al.: Going deeper with convolutions. In: Proc. of CVPR, pp. 1–9 (2015) Szegedy, C., et al.: Going deeper with convolutions. In: Proc. of CVPR, pp. 1–9 (2015)
32.
go back to reference Teru, K.K., Denis, E.G., Hamilton, W.L.: Inductive relation prediction by subgraph reasoning. In: Proc. of ICML, vol. 119, pp. 9448–9457 (2020) Teru, K.K., Denis, E.G., Hamilton, W.L.: Inductive relation prediction by subgraph reasoning. In: Proc. of ICML, vol. 119, pp. 9448–9457 (2020)
33.
go back to reference Tian, L., Zhou, X., Wu, Y.P., Zhou, W.T., Zhang, J.H., Zhang, T.S.: Knowledge graph and knowledge reasoning: a systematic review. J. Electron. Sci. Technol. 20, 100159 (2022)CrossRef Tian, L., Zhou, X., Wu, Y.P., Zhou, W.T., Zhang, J.H., Zhang, T.S.: Knowledge graph and knowledge reasoning: a systematic review. J. Electron. Sci. Technol. 20, 100159 (2022)CrossRef
34.
go back to reference Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Representing text for joint embedding of text and knowledge bases. In: Proc. of EMNLP, pp. 1499–1509 (2015) Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Representing text for joint embedding of text and knowledge bases. In: Proc. of EMNLP, pp. 1499–1509 (2015)
35.
go back to reference Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proc. of ICML, vol. 48, pp. 2071–2080 (2016) Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proc. of ICML, vol. 48, pp. 2071–2080 (2016)
36.
go back to reference Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-relational graph convolutional networks. In: Proc. of ICLR, pp. 1–16 (2020) Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-relational graph convolutional networks. In: Proc. of ICLR, pp. 1–16 (2020)
37.
go back to reference Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proc. of ICLR, pp. 1–12 (2018) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proc. of ICLR, pp. 1–12 (2018)
38.
go back to reference Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29, 2724–2743 (2017)CrossRef Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29, 2724–2743 (2017)CrossRef
39.
go back to reference Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proc. of AAAI, vol. 28, pp. 1112–1119 (2014) Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proc. of AAAI, vol. 28, pp. 1112–1119 (2014)
40.
go back to reference Wu, F., Jing, X., Wei, P., Lan, C., Ji, Y., Jiang, G., Huang, Q.: Semi-supervised multi-view graph convolutional networks with application to webpage classification. Inf. Sci. 591, 142–154 (2022)CrossRef Wu, F., Jing, X., Wei, P., Lan, C., Ji, Y., Jiang, G., Huang, Q.: Semi-supervised multi-view graph convolutional networks with application to webpage classification. Inf. Sci. 591, 142–154 (2022)CrossRef
41.
go back to reference Wu, S., Wan, H., Chen, W., Wu, Y., Shen, J., Lin, Y.: Towards enhancing relational rules for knowledge graph link prediction. In: Proc. of EMNLP Findings, pp. 10082–10097 (2023) Wu, S., Wan, H., Chen, W., Wu, Y., Shen, J., Lin, Y.: Towards enhancing relational rules for knowledge graph link prediction. In: Proc. of EMNLP Findings, pp. 10082–10097 (2023)
42.
go back to reference Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowledge graph reasoning. In: Proc. of EMNLP, pp. 564–573 (2017) Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowledge graph reasoning. In: Proc. of EMNLP, pp. 564–573 (2017)
43.
go back to reference Xu, X., Zhang, P., He, Y., Chao, C., Yan, C.: Subgraph neighboring relations infomax for inductive link prediction on knowledge graphs. In: Proc. of IJCAI, pp. 2341–2347 (2022) Xu, X., Zhang, P., He, Y., Chao, C., Yan, C.: Subgraph neighboring relations infomax for inductive link prediction on knowledge graphs. In: Proc. of IJCAI, pp. 2341–2347 (2022)
44.
go back to reference Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proc. of ICLR, pp. 1–12 (2015) Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proc. of ICLR, pp. 1–12 (2015)
45.
go back to reference Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: Proc. of NeurIPS, vol. 30, pp. 2319–2328 (2017) Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: Proc. of NeurIPS, vol. 30, pp. 2319–2328 (2017)
46.
go back to reference Zhang, W., Yao, Z., Chen, M., Huang, Z., Chen, H.: NeuralKG-ind: a Python library for inductive knowledge graph representation learning. In: Proc. of SIGIR, pp. 3140–3144 (2023) Zhang, W., Yao, Z., Chen, M., Huang, Z., Chen, H.: NeuralKG-ind: a Python library for inductive knowledge graph representation learning. In: Proc. of SIGIR, pp. 3140–3144 (2023)
47.
go back to reference Zhang, Y., Yao, Q.: Knowledge graph reasoning with relational digraph. In: Proc. of WWW, pp. 912–924 (2022) Zhang, Y., Yao, Q.: Knowledge graph reasoning with relational digraph. In: Proc. of WWW, pp. 912–924 (2022)
48.
go back to reference Zhang, Y., Zhou, Z., Yao, Q., Chu, X., Han, B.: AdaProp: learning adaptive propagation for graph neural network based knowledge graph reasoning. In: Proc. of KDD, pp. 3446–3457 (2023) Zhang, Y., Zhou, Z., Yao, Q., Chu, X., Han, B.: AdaProp: learning adaptive propagation for graph neural network based knowledge graph reasoning. In: Proc. of KDD, pp. 3446–3457 (2023)
49.
go back to reference Zhu, Z., et al.: A*Net: a scalable path-based reasoning approach for knowledge graphs. In: Proc. of NeurIPS, vol. 36, pp. 59323–59336 (2023) Zhu, Z., et al.: A*Net: a scalable path-based reasoning approach for knowledge graphs. In: Proc. of NeurIPS, vol. 36, pp. 59323–59336 (2023)
50.
go back to reference Zhu, Z., Zhang, Z., Xhonneux, L.A.C., Tang, J.: Neural Bellman-Ford networks: a general graph neural network framework for link prediction. In: Proc. of NeurIPS, vol. 34, pp. 29476–29490 (2021) Zhu, Z., Zhang, Z., Xhonneux, L.A.C., Tang, J.: Neural Bellman-Ford networks: a general graph neural network framework for link prediction. In: Proc. of NeurIPS, vol. 34, pp. 29476–29490 (2021)
Metadata
Title
Expanding the Scope: Inductive Knowledge Graph Reasoning with Multi-starting Progressive Propagation
Authors
Zhoutian Shao
Yuanning Cui
Wei Hu
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-77850-6_3

Premium Partner