Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

3. Experimental and Computational Methods

Author : Dr. Jannis Lehmann

Published in: Toroidal Order in Magnetic Metamaterials

Publisher: Springer International Publishing

Abstract

This chapter provides an overview of techniques that I have used for this work. After introducing the fabrication of artificial crystals, the major part discusses magnetic force microscopy as one of the two main techniques that have been applied for studying and manipulating the magnetic state of nanomagnetic arrays. The chapter continues by providing background for the second main part—optical methods, mainly the magneto-optical Kerr effect, that are able to detect changes in the magnetisation, but eventually of the toroidisation as well, exploiting more sophisticated experimental settings. Since the as-grown magnetic state of the fabricated crystals cannot simply be changed by annealing procedures, a concept for a non-thermal relaxation of the samples is presented to disprove a possible pinning of the magnetic configuration. A section of this chapter discusses a statistical analysis scheme to relate the local energy landscape to the formation of particular micromagnetic states. Moreover, a self-written two-dimensional micromagnetic calculation script is presented that gives access to magnetic fields that cause correlation between the building blocks in magneto-toroidal arrays. Last, the MFM-revealed microscopic magnetisation pattern do not show the corresponding toroidal order directly. Therefore, the chapter closes with ideas for uncovering contrast between different toroidal domain states using suitable image post-processing.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Footnotes
1
This might directly originate from ferro- or ferrimagnetism, or, for instance, from non-compensated magnetic moments at domain walls in antiferromagnets or from induced spin separations and accumulations.
 
2
Note that, due to the large refractive index of conductors, light refracts into a metal with almost normal incidence. The consequence is a generally smaller signal for LMOKE than for PMOKE.
 
3
The domain states do not necessarily have to form a strictly periodic alternating pattern, but should have a characteristic length scale of the order of the light wavelength.
 
4
It can be shown that two-dimensional magnetic structures exhibit a much weaker correlation as compared with three-dimensional ones. The integration of the dipole-interaction potential (\(\propto r^{-3}\)) over a three-dimensional volume of interacting magnetic moments yields \(\;\lim _{r' \rightarrow \infty }\int _0^{r'} r^{-3} \cdot r^2 dr = \ln (r') + \text {const.}\;\) and, thus, diverges for \(r' \rightarrow \infty \). In the case of a two-dimensional system, the area-integral yields \(\;\lim _{r' \rightarrow \infty }\int _0^{r'} r^{-3} \cdot r dr = -1/r' + \text {const.,}\) which gives finite value for \(r' \rightarrow \infty \).
 
5
Note that, for a quench from temperatures that correspond to a thermal energy of a magnitude that is comparable to the magnetic coupling energy, entropy provides a non-negligible contribution to the formation of short-range order. This in turn is the reason for the thermal population of vertex states of different energy.
 
Literature
1.
go back to reference Lehmann J et al (2019) Microdisplays as a versatile tool for the optical simulation of crystal diffraction in the classroom. Journal of Applied Crystallography 52(2):457–462 CrossRef Lehmann J et al (2019) Microdisplays as a versatile tool for the optical simulation of crystal diffraction in the classroom. Journal of Applied Crystallography 52(2):457–462 CrossRef
2.
go back to reference J. I. Martin et al. Ordered magnetic nanostructures: fabrication and properties. Journal of Magnetism and Magnetic Materials (2003), p. 53 J. I. Martin et al. Ordered magnetic nanostructures: fabrication and properties. Journal of Magnetism and Magnetic Materials (2003), p. 53
4.
go back to reference H. Hopster et al., eds. Magnetic Microscopy of Nanostructures. Springer Berlin Heidelberg, 2005. http://​dx.​doi.​org/​10.​1007/​b137837 H. Hopster et al., eds. Magnetic Microscopy of Nanostructures. Springer Berlin Heidelberg, 2005. http://​dx.​doi.​org/​10.​1007/​b137837
5.
go back to reference U. Hartmann. Magnetic Force Microscopy (1999), p. 36 U. Hartmann. Magnetic Force Microscopy (1999), p. 36
7.
go back to reference Zhu X et al (2005) Diffracted magneto-optical Kerr effects of permalloy ring arrays. Journal of Applied Physics 97(10):10J712 CrossRef Zhu X et al (2005) Diffracted magneto-optical Kerr effects of permalloy ring arrays. Journal of Applied Physics 97(10):10J712 CrossRef
8.
go back to reference B. Bhushan and H. Fuchs. Applied scanning probe methods. Springer, 2009 B. Bhushan and H. Fuchs. Applied scanning probe methods. Springer, 2009
12.
go back to reference Saenz JJ et al (1987) Observation of magnetic forces by the atomic force microscope. Journal of Applied Physics 62(10):4293–4295 ADSCrossRef Saenz JJ et al (1987) Observation of magnetic forces by the atomic force microscope. Journal of Applied Physics 62(10):4293–4295 ADSCrossRef
17.
go back to reference U. Hartmann. Fundamentals and Special Applications of Non-Contact Scanning Force Microscopy. In: Advances in Electronics and Electron Physics. Vol. 87. Elsevier, 1993, pp. 49-200 U. Hartmann. Fundamentals and Special Applications of Non-Contact Scanning Force Microscopy. In: Advances in Electronics and Electron Physics. Vol. 87. Elsevier, 1993, pp. 49-200
22.
go back to reference A. K. Zvezdin and V. A. Kotov. Modern magnetooptics and magnetooptical materials. Institute of Physics Pub, 1997 A. K. Zvezdin and V. A. Kotov. Modern magnetooptics and magnetooptical materials. Institute of Physics Pub, 1997
23.
go back to reference S. Sugano and N. Kojima. Magneto-optics. Springer, 2000 S. Sugano and N. Kojima. Magneto-optics. Springer, 2000
25.
go back to reference A. Hubert and R. Schaefer. Magnetic domains: the analysis of magnetic microstructures. Springer, 2009 A. Hubert and R. Schaefer. Magnetic domains: the analysis of magnetic microstructures. Springer, 2009
31.
go back to reference Ebert H (1996) Magneto-optical effects in transition metal systems. Reports on Progress in Physics 59(12):1665–1735 ADSCrossRef Ebert H (1996) Magneto-optical effects in transition metal systems. Reports on Progress in Physics 59(12):1665–1735 ADSCrossRef
33.
34.
go back to reference Z. Q. Qiu and S. D. Bader. Surface magneto-optic Kerr effect (2000), p. 14 Z. Q. Qiu and S. D. Bader. Surface magneto-optic Kerr effect (2000), p. 14
35.
go back to reference Krinchik GS, Artemjev VA (1968) Magneto-optic Properties of Nickel Iron and Cobalt. Journal of Applied Physics 39(2):1276–1278 ADSCrossRef Krinchik GS, Artemjev VA (1968) Magneto-optic Properties of Nickel Iron and Cobalt. Journal of Applied Physics 39(2):1276–1278 ADSCrossRef
38.
go back to reference P. Oppeneer. Chapter 3 Magneto-optical kerr spectra. Handbook of Magnetic Materials. Vol. 13. Elsevier, 2001, pp. 229-422 P. Oppeneer. Chapter 3 Magneto-optical kerr spectra. Handbook of Magnetic Materials. Vol. 13. Elsevier, 2001, pp. 229-422
39.
go back to reference H. Ebert and G. Schuetz, eds. Spin-orbit-influenced spectroscopies of magnetic solids. 466. Springer, 1996 H. Ebert and G. Schuetz, eds. Spin-orbit-influenced spectroscopies of magnetic solids. 466. Springer, 1996
42.
go back to reference Telesnin RV et al (1972) Diffraction of light in magnetic stripe-structure. Physica Status Solidi (a) 12(1):303–306 ADSCrossRef Telesnin RV et al (1972) Diffraction of light in magnetic stripe-structure. Physica Status Solidi (a) 12(1):303–306 ADSCrossRef
44.
go back to reference B. Kuhlow. Light Diffraction By Magnetic Domain Gratings And Its Applications. Journal of Magnetism and Magnetic Materials (1980), pp. 391-394 B. Kuhlow. Light Diffraction By Magnetic Domain Gratings And Its Applications. Journal of Magnetism and Magnetic Materials (1980), pp. 391-394
51.
go back to reference Grimsditch M et al (2001) Brillouin scattering and diffracted magneto-optical Kerr effect from arrays of dots and antidots (invited). Journal of Applied Physics 89(11):7096–7100 ADSCrossRef Grimsditch M et al (2001) Brillouin scattering and diffracted magneto-optical Kerr effect from arrays of dots and antidots (invited). Journal of Applied Physics 89(11):7096–7100 ADSCrossRef
60.
go back to reference Westphalen A et al (2007) Invited article: Vector and Bragg Magneto-optical Kerr effect for the analysis of nanostructured magnetic arrays. Review of Scientific Instruments 78(12):121301 ADSCrossRef Westphalen A et al (2007) Invited article: Vector and Bragg Magneto-optical Kerr effect for the analysis of nanostructured magnetic arrays. Review of Scientific Instruments 78(12):121301 ADSCrossRef
62.
go back to reference B. Aktas, L. Tagirov, and F. Mikailov, eds. Magnetic nanostructures. 94. Springer, 2007 B. Aktas, L. Tagirov, and F. Mikailov, eds. Magnetic nanostructures. 94. Springer, 2007
76.
go back to reference Morgan JP et al (2011) Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nature Physics 7(1):75–79 ADSCrossRef Morgan JP et al (2011) Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nature Physics 7(1):75–79 ADSCrossRef
Metadata
Title
Experimental and Computational Methods
Author
Dr. Jannis Lehmann
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-85495-9_3

Premium Partners