Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

11-09-2019 | Original Research | Issue 6/2020

International Journal of Material Forming 6/2020

Experimental and numerical investigation of reduction in shape distortion for angled composite parts

Journal:
International Journal of Material Forming > Issue 6/2020
Authors:
Khubab Shaker, Yasir Nawab, Abdelghani Saouab
Important notes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Controlling the fabrication process induced shape distortion in composite parts is a concern of composite industry and relevant researchers in the recent year. This study focused on the numerical as well as experimental investigation of the effect of addition of silica microparticles on the mechanical properties and the cured shape of glass/vinyl ester angled composite parts. UD glass fabric/ vinyl ester laminated composite parts were fabricated without and with the addition of silica microparticles. The thermal and mechanical properties of resin samples containing silica particles were characterised using Dilatometer and Universal Testing Machine. It was found that the addition of silica microparticles has reduced the thermal expansion coefficients (CTE) and increased the modulus of resin. These thermal and mechanical properties were then used as matrix properties for three-phase composite laminated parts. The analytical micromechanical model was used to determine the thermomechanical properties of composite lamina. The numerical investigations of spring-in in angled composite parts were performed on commercial FEA software, COMSOL Multiphysics® (v5.4). The experimental results showed that the angled part without any fillers had a higher spring-in value of 1.807°, while the other part having 5% fillers exhibited a lower spring-in value of 0.632° only. The numerical results were found to be in close agreement with the experimental results.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2020

International Journal of Material Forming 6/2020 Go to the issue

Premium Partners

    Image Credits