Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 9/2020

28-01-2020 | Research Article-Chemical Engineering

Experimental and Theoretical Investigation of Thermophysical Properties of Synthesized Hybrid Nanofluid Developed by Modeling Approaches

Authors: Fatemeh Nasirzadehroshenin, Alireza pourmozafari, Heydar Maddah, Hossein Sakhaeinia

Published in: Arabian Journal for Science and Engineering | Issue 9/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Although, titanium oxide (TiO2) has appropriate mechanical and chemical stability used in different applications, its thermal conductivity slightly increases with an increasing temperature and concentration compared with other metal oxides such as aluminum oxide (Al2O3). Thus, synthesized aluminum oxide nanoparticles were incorporated on the surfaces of titanium oxide in ultrasonication condition with purpose of thermophysical properties modification. The scanning electron microscopy and X-ray diffraction were used to investigate the structure and morphology of synthesized nanocomposite. The impact of variables (temperature, volume fraction and nanoparticle size) on the thermal conductivity and viscosity of prepared hybrid nanofluid was investigated using KD2Pro instrument and Brookfield DVII viscometer, respectively. Results showed a significant improvement of thermophysical properties of prepared hybrid nanofluid, compared to water or untreated titanium oxide–water. The results showed that three mentioned variables considerably affect the thermophysical properties of hybrid nanofluid; as an increasing volume fraction, reducing nanoparticle size and temperature led to an increasing viscosity while enhanced thermal conductivity was resulted from an increasing nanofluid volume fraction and temperature, and a decreasing nanoparticle size. This was confirmed using two computer-modeling approaches, which allow optimization of the thermophysical properties of hybrid nanofluid. Modifying Response Surface Methodology-Central Composite Design (RSM-CCD) estimated accurately the optimal conditions for thermal conductivity and viscosity. The best artificial neural network model was chosen based on its predictive accuracy for estimation of thermophysical properties; having seven neurons in hidden layer and minimum error, demonstrated the most accurate approach for modeling the considered task.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Yu, W.; France, D.M.; Routbort, J.L.; Choi, S.U.S.: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Eng. 29, 432–460 (2008)CrossRef Yu, W.; France, D.M.; Routbort, J.L.; Choi, S.U.S.: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Eng. 29, 432–460 (2008)CrossRef
3.
go back to reference Tyler, T.; Shenderova, O.; Cunningham, G.; Walsh, J.; Drobnik, J.; McGuire, G.: Thermal transport properties of diamond-based nanofluids and nanocomposites. Diam. Relat. Mater. 15, 2078–2081 (2006)CrossRef Tyler, T.; Shenderova, O.; Cunningham, G.; Walsh, J.; Drobnik, J.; McGuire, G.: Thermal transport properties of diamond-based nanofluids and nanocomposites. Diam. Relat. Mater. 15, 2078–2081 (2006)CrossRef
4.
go back to reference Das, S.K.; Choi, S.U.S.; Patel, H.E.: Heat transfer in nanofluids, a review. Heat Transfer Eng. 27(10), 3–19 (2006)CrossRef Das, S.K.; Choi, S.U.S.; Patel, H.E.: Heat transfer in nanofluids, a review. Heat Transfer Eng. 27(10), 3–19 (2006)CrossRef
5.
go back to reference Liu, M.S.; Lin, M.C.C.; Huang, I.T.; Wang, C.C.: Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int. Commun. Heat Mass Transfer 32, 1202–1210 (2005)CrossRef Liu, M.S.; Lin, M.C.C.; Huang, I.T.; Wang, C.C.: Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int. Commun. Heat Mass Transfer 32, 1202–1210 (2005)CrossRef
6.
go back to reference Choi, S.U.S.; Zhang, Z.G.; Keblinski, P.; Nalwa, H.S. (eds.): Nanofluids, in encyclopedia of nanoscience and nanotechnology, vol. 6, pp. 737–757. American Scientific Publishers, Los Angeles (2004) Choi, S.U.S.; Zhang, Z.G.; Keblinski, P.; Nalwa, H.S. (eds.): Nanofluids, in encyclopedia of nanoscience and nanotechnology, vol. 6, pp. 737–757. American Scientific Publishers, Los Angeles (2004)
7.
go back to reference Murshed, S.M.S.; Tan, S.H.; Nguyen, N.T.: Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics. J. Phys. D Appl. Phys. 41(085502), 1–5 (2008) Murshed, S.M.S.; Tan, S.H.; Nguyen, N.T.: Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics. J. Phys. D Appl. Phys. 41(085502), 1–5 (2008)
8.
go back to reference Wong, K.V.; Kurma, T.: Transport properties of alumina nanofluids. Nanotechnology 19(345702), 8 (2008) Wong, K.V.; Kurma, T.: Transport properties of alumina nanofluids. Nanotechnology 19(345702), 8 (2008)
9.
go back to reference Wong, K.V.; Bonn, B.; Vu, S.; Samedi, S.: Study of nanofluid natural convection phenomena in rectangular enclosures, In: Proceedings of IMECE 2007, Nov. 2007, Seattle Wong, K.V.; Bonn, B.; Vu, S.; Samedi, S.: Study of nanofluid natural convection phenomena in rectangular enclosures, In: Proceedings of IMECE 2007, Nov. 2007, Seattle
10.
go back to reference Minkowycz, W.; et al.: Nanoparticle Heat Transfer and Fluid Flow. CRC Press, Boca Raton (2013) Minkowycz, W.; et al.: Nanoparticle Heat Transfer and Fluid Flow. CRC Press, Boca Raton (2013)
11.
go back to reference Das, S.K.; Stephen, S.U.; Choi, W.Yu; Pradeep, T.: Nanofluids Science and Technology, p. 397. Wiley, New Jersey (2007)CrossRef Das, S.K.; Stephen, S.U.; Choi, W.Yu; Pradeep, T.: Nanofluids Science and Technology, p. 397. Wiley, New Jersey (2007)CrossRef
13.
go back to reference Sundar, L.S.; Sharma, K.V.; Singh, Manoj K.; Sousa, A.C.M.: Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor–a review. Renew. Sustain. Energy Rev. 68(P1), 185–198 (2017)CrossRef Sundar, L.S.; Sharma, K.V.; Singh, Manoj K.; Sousa, A.C.M.: Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor–a review. Renew. Sustain. Energy Rev. 68(P1), 185–198 (2017)CrossRef
14.
go back to reference Choi, S.U.S.: Nanofluids: from vision to reality through research. J. Heat Transfer 131(3), 9 (2009)CrossRef Choi, S.U.S.: Nanofluids: from vision to reality through research. J. Heat Transfer 131(3), 9 (2009)CrossRef
15.
go back to reference Masuda, H.; Ebata, A.; Teramea, K.; Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei 4, 227–233 (1993)CrossRef Masuda, H.; Ebata, A.; Teramea, K.; Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei 4, 227–233 (1993)CrossRef
16.
go back to reference Eastman, J.A.; Choi, U.S.; Li, S.; Thompson, L. J.; Lee, S: Enhanced thermal conductivity through the development of nanofluids. In: Komarneni, S., Parker, J. C., Wollenberger, H. J., (eds.)Nanophase and Nanocomposite Materials II. pp. 3–11. Materials Research Society, Pittsburg (1997) Eastman, J.A.; Choi, U.S.; Li, S.; Thompson, L. J.; Lee, S: Enhanced thermal conductivity through the development of nanofluids. In: Komarneni, S., Parker, J. C., Wollenberger, H. J., (eds.)Nanophase and Nanocomposite Materials II. pp. 3–11. Materials Research Society, Pittsburg (1997)
17.
go back to reference Yu, W.H.; France, D.M.; Routbort, J.L.; Choi, S.U.S.: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Eng. 29, 432–460 (2009)CrossRef Yu, W.H.; France, D.M.; Routbort, J.L.; Choi, S.U.S.: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Eng. 29, 432–460 (2009)CrossRef
18.
go back to reference Eapen, J.; Rusconi, R.; Piazza, R.; Yip, S.: The classical nature of thermal conduction in nanofluids. J. Heat Transfer 132, 102402-1–102402-14 (2010)CrossRef Eapen, J.; Rusconi, R.; Piazza, R.; Yip, S.: The classical nature of thermal conduction in nanofluids. J. Heat Transfer 132, 102402-1–102402-14 (2010)CrossRef
19.
go back to reference Rusconi, R.; Rodari, E.; Piazza, R.: Optical measurements of the thermal properties of nanofluids. Appl. Phys. Lett. 89, 2619161–2619163 (2006)CrossRef Rusconi, R.; Rodari, E.; Piazza, R.: Optical measurements of the thermal properties of nanofluids. Appl. Phys. Lett. 89, 2619161–2619163 (2006)CrossRef
20.
go back to reference Putnam, S.A.; Cahill, D.G.; Braun, P.V.: Thermal conductivity of nanoparticle suspensions. J. Appl. Phys. 99, 084308-1–084308-6 (2006)CrossRef Putnam, S.A.; Cahill, D.G.; Braun, P.V.: Thermal conductivity of nanoparticle suspensions. J. Appl. Phys. 99, 084308-1–084308-6 (2006)CrossRef
21.
go back to reference Venerus, D.C.; Kabadi, M.S.; Lee, S.; Perez-Luna, V.: Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. J. Appl. Phys. 100, 0943101–0943105 (2006)CrossRef Venerus, D.C.; Kabadi, M.S.; Lee, S.; Perez-Luna, V.: Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. J. Appl. Phys. 100, 0943101–0943105 (2006)CrossRef
22.
go back to reference Buongiorno, J.; Venerus, D.C.; Prabhat, N.: A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 106, 094312-1–094312-14 (2009)CrossRef Buongiorno, J.; Venerus, D.C.; Prabhat, N.: A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 106, 094312-1–094312-14 (2009)CrossRef
23.
go back to reference Prasher, R.: Measurements of nanofluid viscosity and its implications for thermal applications. Appl. Phys. Lett. 89(13), 133108 (2006)CrossRef Prasher, R.: Measurements of nanofluid viscosity and its implications for thermal applications. Appl. Phys. Lett. 89(13), 133108 (2006)CrossRef
24.
go back to reference Chen, H.; Yulong, D.; Chunqing, T.: Rheological behaviour of nanofluids. New J. Phys. 9(10), 367 (2007)CrossRef Chen, H.; Yulong, D.; Chunqing, T.: Rheological behaviour of nanofluids. New J. Phys. 9(10), 367 (2007)CrossRef
25.
go back to reference Xie, H.; Yu, W.; Li, Y.; Chen, L.: Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Res. Lett. 6, 1–24 (2011)CrossRef Xie, H.; Yu, W.; Li, Y.; Chen, L.: Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Res. Lett. 6, 1–24 (2011)CrossRef
26.
go back to reference Animasaun, I.L.: 47nm Alumina–water nanofluid flow within boundary layer formed on upper horizontal surface of paraboloid of revolution in the presence of quartic autocatalysis chemical reaction. Alex. Eng. J. 55, 2375–2389 (2016)CrossRef Animasaun, I.L.: 47nm Alumina–water nanofluid flow within boundary layer formed on upper horizontal surface of paraboloid of revolution in the presence of quartic autocatalysis chemical reaction. Alex. Eng. J. 55, 2375–2389 (2016)CrossRef
29.
go back to reference Moradikazerouni, A.; Hajizadeh, A.; Safaei, M.R.; Afrand, M.; Yarmand, H.; Zulkifli, N.W.B.M.: Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: optimal artificial neural network and curve-fitting. Phys. A Stat. Mech. Appl. 521(2019), 138–145 (2019). https://doi.org/10.1016/j.physa.2019.01.051CrossRef Moradikazerouni, A.; Hajizadeh, A.; Safaei, M.R.; Afrand, M.; Yarmand, H.; Zulkifli, N.W.B.M.: Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: optimal artificial neural network and curve-fitting. Phys. A Stat. Mech. Appl. 521(2019), 138–145 (2019). https://​doi.​org/​10.​1016/​j.​physa.​2019.​01.​051CrossRef
30.
go back to reference Yarmand, H.; Afrand, M.; Safaei, M.R.; Zulkifli, N.W.B.M.; Qi, C.; Hajizadeh, A.: Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Phys. A Stat. Mech. Appl. 519(2018), 209–216 (2018). https://doi.org/10.1016/j.physa.2018.12.010CrossRef Yarmand, H.; Afrand, M.; Safaei, M.R.; Zulkifli, N.W.B.M.; Qi, C.; Hajizadeh, A.: Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Phys. A Stat. Mech. Appl. 519(2018), 209–216 (2018). https://​doi.​org/​10.​1016/​j.​physa.​2018.​12.​010CrossRef
32.
go back to reference Manasrah, A.D.; Al-Mubaiyedh, U.A.; Laui, T.; Ben Mansour, R.; Al-Marri, M.J.; Almanassra, I.W.; Abdala, A.; Atieh, M.A.: Appl. Therm. Eng. 107, 1008–1018 (2016)CrossRef Manasrah, A.D.; Al-Mubaiyedh, U.A.; Laui, T.; Ben Mansour, R.; Al-Marri, M.J.; Almanassra, I.W.; Abdala, A.; Atieh, M.A.: Appl. Therm. Eng. 107, 1008–1018 (2016)CrossRef
33.
go back to reference Chandraprabu, V.; Sankaranarayanan, G.; Iniyan, S.; Suresh, S.: Heat transfer enhancement characteristics of Al2O3/Water and CuO/Water nanofluids in a tube in tube condenser fitted with an air conditioning system—an experimental comparison. J. Therm. Sci. Eng. Appl. 6(041004), 1–5 (2014) Chandraprabu, V.; Sankaranarayanan, G.; Iniyan, S.; Suresh, S.: Heat transfer enhancement characteristics of Al2O3/Water and CuO/Water nanofluids in a tube in tube condenser fitted with an air conditioning system—an experimental comparison. J. Therm. Sci. Eng. Appl. 6(041004), 1–5 (2014)
34.
go back to reference Venkateshan, T.; Eswaramoorthi, M.: A review on performance of heat exchangers with different configurations. Int. J. Res. Appl. Sci. Eng. Technol. 3, 2321–9653 (2015) Venkateshan, T.; Eswaramoorthi, M.: A review on performance of heat exchangers with different configurations. Int. J. Res. Appl. Sci. Eng. Technol. 3, 2321–9653 (2015)
35.
go back to reference Jung, J.-Y.; Cho, C.; Lee, W.H.; Kang, Y.T.: Int. J. Heat Mass Transfer 54, 1728–1733 (2011)CrossRef Jung, J.-Y.; Cho, C.; Lee, W.H.; Kang, Y.T.: Int. J. Heat Mass Transfer 54, 1728–1733 (2011)CrossRef
36.
go back to reference Eastman, J.A.; Choi, S.; Li, S.; Yu, W.; Thompson, L.: Appl. A Phys. Lett. 78, 718–720 (2001)CrossRef Eastman, J.A.; Choi, S.; Li, S.; Yu, W.; Thompson, L.: Appl. A Phys. Lett. 78, 718–720 (2001)CrossRef
Metadata
Title
Experimental and Theoretical Investigation of Thermophysical Properties of Synthesized Hybrid Nanofluid Developed by Modeling Approaches
Authors
Fatemeh Nasirzadehroshenin
Alireza pourmozafari
Heydar Maddah
Hossein Sakhaeinia
Publication date
28-01-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 9/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04352-6

Other articles of this Issue 9/2020

Arabian Journal for Science and Engineering 9/2020 Go to the issue

Premium Partners