Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 3/2021

26-10-2020 | Research Article-Mechanical Engineering

Experimental Evaluation of Performance Characteristics of a Horizontal Copper Mesh Wick-Based Miniature Loop Heat Pipe

Authors: Muhammad Sajid Kamran, Kashifa Naz, Jamal Umer, Muhammad Sajjad, Muhammad Wajid Saleem, Mudather Ibrahim Mudather Zeinelabdeen

Published in: Arabian Journal for Science and Engineering | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The ever-increasing computational power of the electronic devices accompanies a greater power dissipation. Understanding and optimization of the heat rejection systems are thus vital to ensure effective thermal management of electronic devices in an often highly confined space. This paper reports the design, development, and results of an experimental investigation of a fast responding and passive heat-rejecting copper–water-based miniature loop heat pipe (mLHP) system. The designed mLHP has a square flat-faced evaporator of 20 mm length with opposite replenishment, four extended surfaces with vapor space, a liquid reservoir or compensation chamber, fin- and tube-type condenser, and different diameter transport lines. Capillary pumping action was ensured by a composite of 100PPI copper mesh with 37% porosity and absorbent wool of 20 µm average pore size. Wick hydration was safeguarded by a 67% filling ratio of mLHP at a cold state. A decrease in thermal resistance and an increase in heat transfer coefficient for evaporation were observed. The thermal resistance of the evaporator and mLHP was 0.109–0.396 °C/W and 0.132–0.644 °C/W with an uncertainty of 3.749% and 3.744%, respectively. The heat transfer coefficient for evaporation achieved during experimentation was 6.313–23.00 kW/m2K with 0.345% uncertainty. No reverse flow of vapors and evaporator dry-out was detected. The maximum temperature sustained was 108 °C against the 205 W heat load with a 4.5-min start-up duration. These results reveal the suitability of the designed miniature loop heat pipe for the heat dissipation of electronics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Singh, R.; Akbarzadeh, A.; Mochizuki, M.: Effect of wick characteristics on the thermal performance of the miniature loop heat pipe. J. Heat Transf. 131(8), 082601 (2009) Singh, R.; Akbarzadeh, A.; Mochizuki, M.: Effect of wick characteristics on the thermal performance of the miniature loop heat pipe. J. Heat Transf. 131(8), 082601 (2009)
2.
go back to reference Riehl, R.R.; Dutra, T.: Development of an experimental loop heat pipe for application in future space missions. Appl. Therm. Eng. 25(1), 101–112 (2005) Riehl, R.R.; Dutra, T.: Development of an experimental loop heat pipe for application in future space missions. Appl. Therm. Eng. 25(1), 101–112 (2005)
3.
go back to reference Maydanik, Y.F.; Chernysheva, M.A.; Pastukhov, V.G.: Review: loop heat pipes with flat evaporators. Appl. Therm. Eng. 67(1–2), 294–307 (2014) Maydanik, Y.F.; Chernysheva, M.A.; Pastukhov, V.G.: Review: loop heat pipes with flat evaporators. Appl. Therm. Eng. 67(1–2), 294–307 (2014)
4.
go back to reference Chang, C.; Huang, B.; Maidanik, Y.F.: Feasibility study of a mini LHP for CPU cooling of a notebook PC. In: Proc. of 12th Int. Heat Pipe Conf. (2002) Chang, C.; Huang, B.; Maidanik, Y.F.: Feasibility study of a mini LHP for CPU cooling of a notebook PC. In: Proc. of 12th Int. Heat Pipe Conf. (2002)
5.
go back to reference Gerasimov, Y.F.; Maydanik, Y.F.; Kiseev, V.; Philippov, G.; Starikov, L.: Evaporation chamber of a heat pipe. USSR Inventor Certificate 495522 (1975) Gerasimov, Y.F.; Maydanik, Y.F.; Kiseev, V.; Philippov, G.; Starikov, L.: Evaporation chamber of a heat pipe. USSR Inventor Certificate 495522 (1975)
6.
go back to reference Maydanik, Y.F.; Fershtater, Y.G.; Pastukhov, V.: Some results of loop heat pipes development, tests and application in engineering. In: Proc. of the 5th International Heat Pipe Symposium (1996) Maydanik, Y.F.; Fershtater, Y.G.; Pastukhov, V.: Some results of loop heat pipes development, tests and application in engineering. In: Proc. of the 5th International Heat Pipe Symposium (1996)
7.
go back to reference Maydanik, Y.F.; Vershinin, S.V.; Korukov, M.A.; Ochterbeck, J.M.: Miniature loop heat pipes—a promising means for cooling electronics. IEEE Trans. Compon. Packag. Technol. 28(2), 290–296 (2005) Maydanik, Y.F.; Vershinin, S.V.; Korukov, M.A.; Ochterbeck, J.M.: Miniature loop heat pipes—a promising means for cooling electronics. IEEE Trans. Compon. Packag. Technol. 28(2), 290–296 (2005)
8.
go back to reference Chernysheva, M.A.; Pastukhov, V.G.; Maydanik, Y.F.: Analysis of heat exchange in the compensation chamber of a loop heat pipe. Energy 55, 253–262 (2013) Chernysheva, M.A.; Pastukhov, V.G.; Maydanik, Y.F.: Analysis of heat exchange in the compensation chamber of a loop heat pipe. Energy 55, 253–262 (2013)
9.
go back to reference Bai, L.; Lin, G.; Mu, Z.; Wen, D.: Theoretical analysis of steady-state performance of a loop heat pipe with a novel evaporator. Appl. Therm. Eng. 64(1), 233–241 (2014) Bai, L.; Lin, G.; Mu, Z.; Wen, D.: Theoretical analysis of steady-state performance of a loop heat pipe with a novel evaporator. Appl. Therm. Eng. 64(1), 233–241 (2014)
10.
go back to reference Feldman Jr, K.; Noreen, D.: Design of heat pipe cooled laser mirrors with an inverted meniscus evaporator wick. AIAA Pap. (United States), vol 80, (1980) Feldman Jr, K.; Noreen, D.: Design of heat pipe cooled laser mirrors with an inverted meniscus evaporator wick. AIAA Pap. (United States), vol 80, (1980)
11.
go back to reference Singh, R.; Akbarzadeh, A.; Mochizuki, M.: Operational characterisitics of the miniature loop heat pipe with non-condensable gases. Int. J. Heat Mass Transf. 53, 3471–3482 (2010) Singh, R.; Akbarzadeh, A.; Mochizuki, M.: Operational characterisitics of the miniature loop heat pipe with non-condensable gases. Int. J. Heat Mass Transf. 53, 3471–3482 (2010)
12.
go back to reference Joung, W.; Yu, T.; Lee, J.: Experimental study on the operating characteristics of a flat bifacial evaporator loop heat pipe. Int. J. Heat Mass Transf. 53(1), 276–285 (2010) Joung, W.; Yu, T.; Lee, J.: Experimental study on the operating characteristics of a flat bifacial evaporator loop heat pipe. Int. J. Heat Mass Transf. 53(1), 276–285 (2010)
13.
go back to reference Maydanik, Y.F.; Vershinin, S.: Development and investigation of copper-water loop heat pipes with high operating characteristics. Heat Pipe Sci. Technol. Int. J. 1(2), 151–162 (2010) Maydanik, Y.F.; Vershinin, S.: Development and investigation of copper-water loop heat pipes with high operating characteristics. Heat Pipe Sci. Technol. Int. J. 1(2), 151–162 (2010)
14.
go back to reference Ku, J.; Ottenstein, L.; Kobel, M.; Rogers, P.; Kaya, T.: Temperature oscillations in loop heat pipe operation. In: AIP Conference Proceedings. AIP (2001) Ku, J.; Ottenstein, L.; Kobel, M.; Rogers, P.; Kaya, T.: Temperature oscillations in loop heat pipe operation. In: AIP Conference Proceedings. AIP (2001)
15.
go back to reference Vlassov, V.V.; Riehl, R.R.: Mathematical model of a loop heat pipe with cylindrical evaporator and integrated reservoir. Appl. Therm. Eng. 28(8), 942–954 (2008) Vlassov, V.V.; Riehl, R.R.: Mathematical model of a loop heat pipe with cylindrical evaporator and integrated reservoir. Appl. Therm. Eng. 28(8), 942–954 (2008)
16.
go back to reference Joung, W.; Yu, T.; Lee, J.: Experimental study on the loop heat pipe with a planar bifacial wick structure. Int. J. Heat Mass Transf. 51(7), 1573–1581 (2008) Joung, W.; Yu, T.; Lee, J.: Experimental study on the loop heat pipe with a planar bifacial wick structure. Int. J. Heat Mass Transf. 51(7), 1573–1581 (2008)
17.
go back to reference Chernysheva, M.A.; Maydanik, Y.F.: 3D-model for heat and mass transfer simulation in flat evaporator of copper-water loop heat pipe. Appl. Therm. Eng. 33, 124–134 (2012) Chernysheva, M.A.; Maydanik, Y.F.: 3D-model for heat and mass transfer simulation in flat evaporator of copper-water loop heat pipe. Appl. Therm. Eng. 33, 124–134 (2012)
18.
go back to reference Maydanik, Y.F.; Vershinin, S.V.: Development and tests of ammonia miniature loop heat pipes with cylindrical evaporators. Appl. Therm. Eng. 29(11), 2297–2301 (2009) Maydanik, Y.F.; Vershinin, S.V.: Development and tests of ammonia miniature loop heat pipes with cylindrical evaporators. Appl. Therm. Eng. 29(11), 2297–2301 (2009)
19.
go back to reference Chernysheva, M.A.; Yushakova, S.I.; Maydanik, Y.F.: Effect of external factors on the operating characteristics of a copper–water loop heat pipe. Int. J. Heat Mass Transf. 81, 297–304 (2015) Chernysheva, M.A.; Yushakova, S.I.; Maydanik, Y.F.: Effect of external factors on the operating characteristics of a copper–water loop heat pipe. Int. J. Heat Mass Transf. 81, 297–304 (2015)
20.
go back to reference Wan, Z.-P.; Wang, X.-W.; Tang, Y.: Condenser design optimization and operation characteristics of a novel miniature loop heat pipe. Energy Convers. Manag. 64, 35–42 (2012) Wan, Z.-P.; Wang, X.-W.; Tang, Y.: Condenser design optimization and operation characteristics of a novel miniature loop heat pipe. Energy Convers. Manag. 64, 35–42 (2012)
21.
go back to reference Wu, S.-C.; Gu, T.-W.; Wang, D.; Chen, Y.-M.: Study of PTFE wick structure applied to loop heat pipe. Appl. Therm. Eng. 81, 51–57 (2015) Wu, S.-C.; Gu, T.-W.; Wang, D.; Chen, Y.-M.: Study of PTFE wick structure applied to loop heat pipe. Appl. Therm. Eng. 81, 51–57 (2015)
22.
go back to reference Xu, J.; Zou, Y.; Yang, D.; Fan, M.: Development of biporous Ti3AlC2 ceramic wicks for loop heat pipe. Mater. Lett. 91, 121–124 (2013) Xu, J.; Zou, Y.; Yang, D.; Fan, M.: Development of biporous Ti3AlC2 ceramic wicks for loop heat pipe. Mater. Lett. 91, 121–124 (2013)
23.
go back to reference Xu, J.; Ji, X.; Yang, W.; Zhao, Z.: Modulated porous wick evaporator for loop heat pipes: experiment. Int. J. Heat Mass Transf. 72, 163–176 (2014) Xu, J.; Ji, X.; Yang, W.; Zhao, Z.: Modulated porous wick evaporator for loop heat pipes: experiment. Int. J. Heat Mass Transf. 72, 163–176 (2014)
24.
go back to reference Chen, B.B.; Liu, Z.C.; Liu, W.; Yang, J.G.; Li, H.; Wang, D.D.: Operational characteristics of two biporous wicks used in loop heat pipe with flat evaporator. Int. J. Heat Mass Transf. 55(7–8), 2204–2207 (2012) Chen, B.B.; Liu, Z.C.; Liu, W.; Yang, J.G.; Li, H.; Wang, D.D.: Operational characteristics of two biporous wicks used in loop heat pipe with flat evaporator. Int. J. Heat Mass Transf. 55(7–8), 2204–2207 (2012)
25.
go back to reference Wang, D.; Liu, Z.; He, S.; Yang, J.; Liu, W.: Operational characteristics of a loop heat pipe with a flat evaporator and two primary biporous wicks. Int. J. Heat Mass Transf. 89, 33–41 (2015) Wang, D.; Liu, Z.; He, S.; Yang, J.; Liu, W.: Operational characteristics of a loop heat pipe with a flat evaporator and two primary biporous wicks. Int. J. Heat Mass Transf. 89, 33–41 (2015)
26.
go back to reference Zhang, C.; Chen, Y.; Shi, M.; Peterson, G.: Optimization of heat pipe with axial “Ω”-shaped micro grooves based on a niched Pareto genetic algorithm (NPGA). Appl. Therm. Eng. 29(16), 3340–3345 (2009) Zhang, C.; Chen, Y.; Shi, M.; Peterson, G.: Optimization of heat pipe with axial “Ω”-shaped micro grooves based on a niched Pareto genetic algorithm (NPGA). Appl. Therm. Eng. 29(16), 3340–3345 (2009)
27.
go back to reference Mishra, D.; Saravanan, T.; Khanra, G.; Girikumar, S.; Sharma, S.; Sreekumar, K.; Sinha, P.: Studies on the processing of nickel base porous wicks for capillary pumped loop for thermal management of spacecrafts. Adv. Powder Technol. 21(6), 658–662 (2010) Mishra, D.; Saravanan, T.; Khanra, G.; Girikumar, S.; Sharma, S.; Sreekumar, K.; Sinha, P.: Studies on the processing of nickel base porous wicks for capillary pumped loop for thermal management of spacecrafts. Adv. Powder Technol. 21(6), 658–662 (2010)
28.
go back to reference Vasiliev, L.; Vasiliev Jr., L.: Sorption heat pipe—a new thermal control device for space and ground application. Int. J. Heat Mass Transf. 48(12), 2464–2472 (2005) Vasiliev, L.; Vasiliev Jr., L.: Sorption heat pipe—a new thermal control device for space and ground application. Int. J. Heat Mass Transf. 48(12), 2464–2472 (2005)
29.
go back to reference Santos, P.H.; Bazzo, E.; Becker, S.; Kulenovic, R.; Mertz, R.: Development of LHPs with ceramic wick. Appl. Therm. Eng. 30(13), 1784–1789 (2010) Santos, P.H.; Bazzo, E.; Becker, S.; Kulenovic, R.; Mertz, R.: Development of LHPs with ceramic wick. Appl. Therm. Eng. 30(13), 1784–1789 (2010)
30.
go back to reference Chan, C.; Siqueiros, E.; Ling-Chin, J.; Royapoor, M.; Roskilly, A.: Heat utilisation technologies: a critical review of heat pipes. Renew. Sustain. Energy Rev. 50, 615–627 (2015) Chan, C.; Siqueiros, E.; Ling-Chin, J.; Royapoor, M.; Roskilly, A.: Heat utilisation technologies: a critical review of heat pipes. Renew. Sustain. Energy Rev. 50, 615–627 (2015)
31.
go back to reference Cao, Y.; Gao, M.; Beam, J.; Donovan, B.: Experiments and analyses of flat miniature heat pipes. J. Thermophys. Heat Transf. 11(2), 158–164 (1997) Cao, Y.; Gao, M.; Beam, J.; Donovan, B.: Experiments and analyses of flat miniature heat pipes. J. Thermophys. Heat Transf. 11(2), 158–164 (1997)
32.
go back to reference Ma, H.; Peterson, G.: Experimental investigation of the maximum heat transport in triangular grooves. Trans. Am. Soc. Mech. Engineers J. Heat Transf. 118, 740–746 (1996) Ma, H.; Peterson, G.: Experimental investigation of the maximum heat transport in triangular grooves. Trans. Am. Soc. Mech. Engineers J. Heat Transf. 118, 740–746 (1996)
33.
go back to reference Tharayil, T.; Asirvatham, L.G.; Ravindran, V.; Wongwises, S.: Thermal performance of miniature loop heat pipe with graphene–water nanofluid. Int. J. Heat Mass Transf. 93, 957–968 (2016) Tharayil, T.; Asirvatham, L.G.; Ravindran, V.; Wongwises, S.: Thermal performance of miniature loop heat pipe with graphene–water nanofluid. Int. J. Heat Mass Transf. 93, 957–968 (2016)
34.
go back to reference Wang, Y.; Cen, J.; Jiang, F.; Cao, W.; Guo, J.: LHP heat transfer performance: a comparison study about sintered copper powder wick and copper mesh wick. Appl. Therm. Eng. 92, 104–110 (2016) Wang, Y.; Cen, J.; Jiang, F.; Cao, W.; Guo, J.: LHP heat transfer performance: a comparison study about sintered copper powder wick and copper mesh wick. Appl. Therm. Eng. 92, 104–110 (2016)
35.
go back to reference Liu, Y.; Xu, G.; Luo, X.; Li, H.; Ma, J.: An experimental investigation on fluid flow and heat transfer characteristics of sintered woven wire mesh structures. Appl. Therm. Eng. 80, 118–126 (2015) Liu, Y.; Xu, G.; Luo, X.; Li, H.; Ma, J.: An experimental investigation on fluid flow and heat transfer characteristics of sintered woven wire mesh structures. Appl. Therm. Eng. 80, 118–126 (2015)
36.
go back to reference Tang, Y.; Xiang, J.; Wan, Z.; Zhou, W.; Wu, L.: A novel miniaturized loop heat pipe. Appl. Therm. Eng. 30(10), 1152–1158 (2010) Tang, Y.; Xiang, J.; Wan, Z.; Zhou, W.; Wu, L.: A novel miniaturized loop heat pipe. Appl. Therm. Eng. 30(10), 1152–1158 (2010)
37.
go back to reference Brautsch, A.; Kew, P.A.: Examination and visualisation of heat transfer processes during evaporation in capillary porous structures. Appl. Therm. Eng. 22(7), 815–824 (2002) Brautsch, A.; Kew, P.A.: Examination and visualisation of heat transfer processes during evaporation in capillary porous structures. Appl. Therm. Eng. 22(7), 815–824 (2002)
38.
go back to reference Kempers, R.; Ewing, D.; Ching, C.: Effect of number of mesh layers and fluid loading on the performance of screen mesh wicked heat pipes. Appl. Therm. Eng. 26(5), 589–595 (2006) Kempers, R.; Ewing, D.; Ching, C.: Effect of number of mesh layers and fluid loading on the performance of screen mesh wicked heat pipes. Appl. Therm. Eng. 26(5), 589–595 (2006)
39.
go back to reference Wong, S.-C.; Kao, Y.-H.: Visualization and performance measurement of operating mesh-wicked heat pipes. Int. J. Heat Mass Transf. 51(17), 4249–4259 (2008)MATH Wong, S.-C.; Kao, Y.-H.: Visualization and performance measurement of operating mesh-wicked heat pipes. Int. J. Heat Mass Transf. 51(17), 4249–4259 (2008)MATH
40.
go back to reference Liu, Z.; Li, H.; Chen, B.; Yang, J.; Liu, W.: Operational characteristics of flat type loop heat pipe with biporous wick. Int. J. Therm. Sci. 58, 180–185 (2012) Liu, Z.; Li, H.; Chen, B.; Yang, J.; Liu, W.: Operational characteristics of flat type loop heat pipe with biporous wick. Int. J. Therm. Sci. 58, 180–185 (2012)
41.
go back to reference Faghri, A.: Heat pipe science and technology. Global Digital Press (1995). Faghri, A.: Heat pipe science and technology. Global Digital Press (1995).
42.
go back to reference Hoyer, N.: Calculation of dryout and post-dryout heat transfer for tube geometry. Int. J. Multiph. Flow 24(2), 319–334 (1998)MATH Hoyer, N.: Calculation of dryout and post-dryout heat transfer for tube geometry. Int. J. Multiph. Flow 24(2), 319–334 (1998)MATH
43.
go back to reference Santos, P.H.D.; Bazzo, E.; Becker, S.; Kulenovic, R.; Mertz, R.: Development of LHPs with ceramic wick. J. Appl. Therm. Eng. 30(13), 1784–1789 (2010) Santos, P.H.D.; Bazzo, E.; Becker, S.; Kulenovic, R.; Mertz, R.: Development of LHPs with ceramic wick. J. Appl. Therm. Eng. 30(13), 1784–1789 (2010)
44.
go back to reference Lin, F.-C.; Liu, B.-H.; Huang, C.-T.; Chen, Y.-M.: Evaporative heat transfer model of a loop heat pipe with bidisperse wick structure. Int. J. Heat Mass Transf. 54(21–22), 4621–4629 (2011)MATH Lin, F.-C.; Liu, B.-H.; Huang, C.-T.; Chen, Y.-M.: Evaporative heat transfer model of a loop heat pipe with bidisperse wick structure. Int. J. Heat Mass Transf. 54(21–22), 4621–4629 (2011)MATH
45.
go back to reference Huang, B.J.; Huang, H.H.; Liang, T.L.: System dynamics model and startup behavior of loop heat pipe. Appl. Therm. Eng. 29(14–15), 2999–3005 (2009) Huang, B.J.; Huang, H.H.; Liang, T.L.: System dynamics model and startup behavior of loop heat pipe. Appl. Therm. Eng. 29(14–15), 2999–3005 (2009)
46.
go back to reference Vasiliev, L.; Lossouam, D.; Romestant, C.; Alexandre, A.; Bertin, Y.: Loop heat pipe for cooling of high-power electronic components. Int. J. Heat Mass Transf. 52(1–2), 301–308 (2009) Vasiliev, L.; Lossouam, D.; Romestant, C.; Alexandre, A.; Bertin, Y.: Loop heat pipe for cooling of high-power electronic components. Int. J. Heat Mass Transf. 52(1–2), 301–308 (2009)
47.
go back to reference Singh, R.; Akbarzadeh, A.: Thermal performance of miniature loop heat pipe operating under different heating modes. In: Thermomechanical Phenomena in Electronics Systems, 2006. ITHERM’06. The Tenth Intersociety Conference. IEEE (2006) Singh, R.; Akbarzadeh, A.: Thermal performance of miniature loop heat pipe operating under different heating modes. In: Thermomechanical Phenomena in Electronics Systems, 2006. ITHERM’06. The Tenth Intersociety Conference. IEEE (2006)
48.
go back to reference Singh, R.; Akbarzadeh, A.; Mochizuki, M.: Operational characteristics of the miniature loop heat pipe with non-condensable gases. Int. J. Heat Mass Transf. 53(17–18), 3471–3482 (2010) Singh, R.; Akbarzadeh, A.; Mochizuki, M.: Operational characteristics of the miniature loop heat pipe with non-condensable gases. Int. J. Heat Mass Transf. 53(17–18), 3471–3482 (2010)
49.
go back to reference Li, J.; Wang, D.; Peterson, G.P.: Experimental studies on a high performance compact loop heat pipe with a square flat evaporator. Appl. Therm. Eng. 30(6–7), 741–752 (2010) Li, J.; Wang, D.; Peterson, G.P.: Experimental studies on a high performance compact loop heat pipe with a square flat evaporator. Appl. Therm. Eng. 30(6–7), 741–752 (2010)
50.
go back to reference Wang, S.; Zhang, W.; Zhang, X.; Chen, J.: Study on start-up characteristics of loop heat pipe under low-power. Int. J. Heat Mass Transf. 54(4), 1002–1007 (2011) Wang, S.; Zhang, W.; Zhang, X.; Chen, J.: Study on start-up characteristics of loop heat pipe under low-power. Int. J. Heat Mass Transf. 54(4), 1002–1007 (2011)
51.
go back to reference Nguyen, X.H.; Sung, B.H.; Choi, J.; Ryoo, S.R.; Ko, H.S.; Kim, C.: Study on heat transfer performance for loop heat pipe with circular flat evaporator. Int. J. Heat Mass Transf. 55(4), 1304–1315 (2012) Nguyen, X.H.; Sung, B.H.; Choi, J.; Ryoo, S.R.; Ko, H.S.; Kim, C.: Study on heat transfer performance for loop heat pipe with circular flat evaporator. Int. J. Heat Mass Transf. 55(4), 1304–1315 (2012)
52.
go back to reference Xu, J.; Zhang, L.; Xu, H.: Performance of LHPs with a novel design evaporator. Int. J. Heat Mass Transf. 55(23–24), 7005–7014 (2012)MathSciNet Xu, J.; Zhang, L.; Xu, H.: Performance of LHPs with a novel design evaporator. Int. J. Heat Mass Transf. 55(23–24), 7005–7014 (2012)MathSciNet
53.
go back to reference Wan, Z.; Deng, J.; Xu, Y.; Wang, X.; Tang, Y.: Thermal performance of a miniature loop heat pipe using water-copper nanofluid. Appl. Therm. Eng. 78, 712–719 (2015) Wan, Z.; Deng, J.; Xu, Y.; Wang, X.; Tang, Y.: Thermal performance of a miniature loop heat pipe using water-copper nanofluid. Appl. Therm. Eng. 78, 712–719 (2015)
54.
go back to reference Lu, X.-Y.; Hua, T.-C.; Liu, M.-J.; Cheng, Y.-X.: Thermal analysis of loop heat pipe used for high-power LED. Thermochim. Acta 493(1–2), 25–29 (2009) Lu, X.-Y.; Hua, T.-C.; Liu, M.-J.; Cheng, Y.-X.: Thermal analysis of loop heat pipe used for high-power LED. Thermochim. Acta 493(1–2), 25–29 (2009)
55.
go back to reference Maydanik, Y.F.: Loop heat pipes. Appl. Therm. Eng. 25(5–6), 635–657 (2005) Maydanik, Y.F.: Loop heat pipes. Appl. Therm. Eng. 25(5–6), 635–657 (2005)
56.
go back to reference Hongxing, Z.; Guiping, L.; Ting, D.; Wei, Y.; Xingguo, S.; Sudakov, R.; Maidanik, Y.F.: Investigation of startup behaviors of a loop heat pipe. J. Thermophys. Heat Transf. 19(4), 509–518 (2005) Hongxing, Z.; Guiping, L.; Ting, D.; Wei, Y.; Xingguo, S.; Sudakov, R.; Maidanik, Y.F.: Investigation of startup behaviors of a loop heat pipe. J. Thermophys. Heat Transf. 19(4), 509–518 (2005)
57.
go back to reference Collier, J.G.; Thome, J.R.: Convective Boiling and Condensation. Clarendon Press, Oxford (1994) Collier, J.G.; Thome, J.R.: Convective Boiling and Condensation. Clarendon Press, Oxford (1994)
Metadata
Title
Experimental Evaluation of Performance Characteristics of a Horizontal Copper Mesh Wick-Based Miniature Loop Heat Pipe
Authors
Muhammad Sajid Kamran
Kashifa Naz
Jamal Umer
Muhammad Sajjad
Muhammad Wajid Saleem
Mudather Ibrahim Mudather Zeinelabdeen
Publication date
26-10-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 3/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-05027-y

Other articles of this Issue 3/2021

Arabian Journal for Science and Engineering 3/2021 Go to the issue

Premium Partners