Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2022

11-04-2022 | Technical Article

Experimental Investigation and Numerical Simulation of Residual Stress and Distortion of Ti6Al4V Components Manufactured Using Selective Laser Melting

Authors: Shuang Gao, Zhijun Tan, Liang Lan, Guoxin Lu, Bo He

Published in: Journal of Materials Engineering and Performance | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Residual stress and distortion are inevitable during metal selective laser melting (SLM) process due to the high thermal gradient. Based on an experimental investigation and a numerical simulation, this paper studied the effect of geometric size and structural feature on the residual stress and distortion of hollow Ti-alloy blades fabricated using SLM. The results indicated that the distortion of blades increased with the increase in height and torsion angle of the blades. However, distortion obviously decreased when the stiffened plates were set inside the blades and the blade thickness increased. When the number of stiffened plates increased from zero to three and the blade thickness increased from 0.5 to 2 mm, the distortion value was reduced by the biggest rate of 38 and 35%, respectively. In addition, the residual stress along the building direction was found to play a dominant role in inducing the distortion. This study showed a new viewpoint to reduce the distortion by optimizing the geometric size and structural feature of a metal part.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y.M. Wang, T. Voisin, J.T. Mckeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen and T.T. Roehling, Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2017, 17, p 1. Y.M. Wang, T. Voisin, J.T. Mckeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen and T.T. Roehling, Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2017, 17, p 1.
2.
go back to reference W. Jin, C. Zhang, S. Jin, Y. Tian, D. Wellmann and W. Liu, Wire Arc Additive Manufacturing of Stainless Steels: A Review, Appl. Sci., 2020, 10(5), p 1563.CrossRef W. Jin, C. Zhang, S. Jin, Y. Tian, D. Wellmann and W. Liu, Wire Arc Additive Manufacturing of Stainless Steels: A Review, Appl. Sci., 2020, 10(5), p 1563.CrossRef
3.
go back to reference D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann, Additive Manufacturing of Metals, Acta Mater., 2016, 117, p 371–392.CrossRef D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann, Additive Manufacturing of Metals, Acta Mater., 2016, 117, p 371–392.CrossRef
4.
go back to reference T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De and W. Zhang, Additive Manufacturing of Metallic Components: Process, Structure and Properties, Prog. Mater. Sci., 2018, 92, p 112–224.CrossRef T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De and W. Zhang, Additive Manufacturing of Metallic Components: Process, Structure and Properties, Prog. Mater. Sci., 2018, 92, p 112–224.CrossRef
5.
go back to reference L. Zai, C. Zhang, Y. Wang, W. Guo, D. Wellmann, X. Tong and Y. Tian, Laser Powder Bed Fusion of Precipitation-Hardened Martensitic Stainless Steels: A Review, Metals, 2020, 10(2), p 255.CrossRef L. Zai, C. Zhang, Y. Wang, W. Guo, D. Wellmann, X. Tong and Y. Tian, Laser Powder Bed Fusion of Precipitation-Hardened Martensitic Stainless Steels: A Review, Metals, 2020, 10(2), p 255.CrossRef
6.
go back to reference W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928.CrossRef W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928.CrossRef
7.
go back to reference Y. Yang, C. Zhang, D. Wang, L. Nie, D. Wellmann and Y. Tian, Additive Manufacturing of WC-Co Hardmetals: A Review, Int. J. Adv. Manuf. Technol., 2020, 108, p 1653–1673.CrossRef Y. Yang, C. Zhang, D. Wang, L. Nie, D. Wellmann and Y. Tian, Additive Manufacturing of WC-Co Hardmetals: A Review, Int. J. Adv. Manuf. Technol., 2020, 108, p 1653–1673.CrossRef
8.
go back to reference J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler and T.M. Pollock, 3D Printing of High-Strength Aluminium Alloys, Nature, 2017, 549(7672), p 365.CrossRef J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler and T.M. Pollock, 3D Printing of High-Strength Aluminium Alloys, Nature, 2017, 549(7672), p 365.CrossRef
9.
go back to reference T. Voisin, N.P. Calta, S.A. Khairallah, J.-B. Forien, L. Balogh, R.W. Cunningham, A.D. Rollett and Y.M. Wang, Defects-Dictated Tensile Properties of Selective Laser Melted Ti–6Al–4V, Mater. Des., 2018, 158, p 113–126.CrossRef T. Voisin, N.P. Calta, S.A. Khairallah, J.-B. Forien, L. Balogh, R.W. Cunningham, A.D. Rollett and Y.M. Wang, Defects-Dictated Tensile Properties of Selective Laser Melted Ti–6Al–4V, Mater. Des., 2018, 158, p 113–126.CrossRef
10.
go back to reference C. Li, C.H. Fu, Y.B. Guo and F.Z. Fang, Fast Prediction and Validation of Part Distortion in Selective Laser Melting, Proc. Manuf., 2015, 1, p 355–365. C. Li, C.H. Fu, Y.B. Guo and F.Z. Fang, Fast Prediction and Validation of Part Distortion in Selective Laser Melting, Proc. Manuf., 2015, 1, p 355–365.
11.
go back to reference D. Buchbinder, N. Pirch, K. Wissenbach, J. Schrage and W. Meiners, Investigation on Reducing Distortion by Preheating During Manufacture of Aluminum Components Using Selective Laser Melting, J. Laser Appl., 2014, 26(1), p 012004.CrossRef D. Buchbinder, N. Pirch, K. Wissenbach, J. Schrage and W. Meiners, Investigation on Reducing Distortion by Preheating During Manufacture of Aluminum Components Using Selective Laser Melting, J. Laser Appl., 2014, 26(1), p 012004.CrossRef
12.
go back to reference A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos and W.E. King, An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel, Metallurg. Mater. Trans. A, 2014, 45(13), p 6260–6270.CrossRef A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos and W.E. King, An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel, Metallurg. Mater. Trans. A, 2014, 45(13), p 6260–6270.CrossRef
13.
go back to reference J.-P. Kruth, J. Deckers, E. Yasa and R. Wauthlé, Assessing and Comparing Influencing Factors of Residual Stresses in Selective Laser Melting Using a Novel Analysis Method, Proc. Inst. Mech. Eng. Pt. B J. Eng. Manuf., 2012, 226(6), p 980–991.CrossRef J.-P. Kruth, J. Deckers, E. Yasa and R. Wauthlé, Assessing and Comparing Influencing Factors of Residual Stresses in Selective Laser Melting Using a Novel Analysis Method, Proc. Inst. Mech. Eng. Pt. B J. Eng. Manuf., 2012, 226(6), p 980–991.CrossRef
14.
go back to reference M.F. Zaeh and G. Branner, Investigations on Residual Stresses and Deformations in Selective Laser Melting, Prod. Eng., 2009, 4(1), p 35–45.CrossRef M.F. Zaeh and G. Branner, Investigations on Residual Stresses and Deformations in Selective Laser Melting, Prod. Eng., 2009, 4(1), p 35–45.CrossRef
15.
go back to reference E. Mirkoohi, D.E. Sievers, H. Garmestani, K. Chiang and S.Y. Liang, Three-Dimensional Semi-Elliptical Modeling of Melt Pool Geometry Considering Hatch Spacing and Time Spacing in Metal Additive Manufacturing, J. Manuf. Process., 2019, 45, p 532–543.CrossRef E. Mirkoohi, D.E. Sievers, H. Garmestani, K. Chiang and S.Y. Liang, Three-Dimensional Semi-Elliptical Modeling of Melt Pool Geometry Considering Hatch Spacing and Time Spacing in Metal Additive Manufacturing, J. Manuf. Process., 2019, 45, p 532–543.CrossRef
16.
go back to reference R. Liu, S. Xu, X. Shao, Y. Wen, X. Shi, L. Huang, M. Hong, J. Hu and Z. Yang, Defect-Engineered NiCo-S Composite as a Bifunctional Electrode for High-Performance Supercapacitor and Electrocatalysis, ACS Appl. Mater. Interf., 2021, 13(40), p 47717–47727.CrossRef R. Liu, S. Xu, X. Shao, Y. Wen, X. Shi, L. Huang, M. Hong, J. Hu and Z. Yang, Defect-Engineered NiCo-S Composite as a Bifunctional Electrode for High-Performance Supercapacitor and Electrocatalysis, ACS Appl. Mater. Interf., 2021, 13(40), p 47717–47727.CrossRef
17.
go back to reference A. Vasinonta, J.L. Beuth and M. Griffith, Process Maps for Predicting Residual Stress and Melt Pool Size in the Laser-Based Fabrication of Thin-Walled Structures, J. Manuf. Sci. Eng., 2007, 129(1), p 101–109.CrossRef A. Vasinonta, J.L. Beuth and M. Griffith, Process Maps for Predicting Residual Stress and Melt Pool Size in the Laser-Based Fabrication of Thin-Walled Structures, J. Manuf. Sci. Eng., 2007, 129(1), p 101–109.CrossRef
18.
go back to reference K. Dai and L. Shaw, Distortion minimization of laser-processed components through control of laser scanning patterns, Rapid Prototyp. J., 2002, 8(5), p 270–276.CrossRef K. Dai and L. Shaw, Distortion minimization of laser-processed components through control of laser scanning patterns, Rapid Prototyp. J., 2002, 8(5), p 270–276.CrossRef
19.
go back to reference H. Ali, H. Ghadbeigi and K. Mumtaz, Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V, Mater. Sci. Eng. A, 2018, 712, p 175–187.CrossRef H. Ali, H. Ghadbeigi and K. Mumtaz, Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V, Mater. Sci. Eng. A, 2018, 712, p 175–187.CrossRef
20.
go back to reference M. Masoomi, S.M. Thompson and N. Shamsaei, Laser powder bed fusion of Ti–6Al–4V parts: thermal modeling and mechanical implications, Int. J. Mach. Tools Manuf., 2017, 118–119, p 73–90.CrossRef M. Masoomi, S.M. Thompson and N. Shamsaei, Laser powder bed fusion of Ti–6Al–4V parts: thermal modeling and mechanical implications, Int. J. Mach. Tools Manuf., 2017, 118–119, p 73–90.CrossRef
21.
go back to reference Z. Tian, C. Zhang, D. Wang, W. Liu, X. Fang, D. Wellmann, Y. Zhao and Y. Tian, A review on laser powder bed fusion of inconel 625 nickel-based alloy, Appl. Sci., 2019, 10, p 81.CrossRef Z. Tian, C. Zhang, D. Wang, W. Liu, X. Fang, D. Wellmann, Y. Zhao and Y. Tian, A review on laser powder bed fusion of inconel 625 nickel-based alloy, Appl. Sci., 2019, 10, p 81.CrossRef
22.
go back to reference Z. Li, R. Xu, Z. Zhang and I. Kucukkoc, The influence of scan length on fabricating thin-walled components in selective laser melting, Int. J. Mach. Tools Manuf., 2018, 126, p 1–12.CrossRef Z. Li, R. Xu, Z. Zhang and I. Kucukkoc, The influence of scan length on fabricating thin-walled components in selective laser melting, Int. J. Mach. Tools Manuf., 2018, 126, p 1–12.CrossRef
23.
go back to reference T. Mukherjee, W. Zhang and T. Debroy, An Improved Prediction of Residual Stresses and Distortion in Additive Manufacturing, Comput. Mater. Sci., 2017, 126, p 360–372.CrossRef T. Mukherjee, W. Zhang and T. Debroy, An Improved Prediction of Residual Stresses and Distortion in Additive Manufacturing, Comput. Mater. Sci., 2017, 126, p 360–372.CrossRef
24.
go back to reference J. Cao, M.A. Gharghouri and P. Nash, Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti–6Al–4V build plates, J. Mater. Process. Technol., 2016, 237, p 409–419.CrossRef J. Cao, M.A. Gharghouri and P. Nash, Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti–6Al–4V build plates, J. Mater. Process. Technol., 2016, 237, p 409–419.CrossRef
25.
go back to reference Y. Zhang, L. Yu, Z. Fang, N.N. Xiong, L. Zhang and H. Tian, An End-to-End Deep Learning Model for Robust Smooth Filtering Identification, Fut. Gener. Comput. Syst., 2022, 127, p 263–275.CrossRef Y. Zhang, L. Yu, Z. Fang, N.N. Xiong, L. Zhang and H. Tian, An End-to-End Deep Learning Model for Robust Smooth Filtering Identification, Fut. Gener. Comput. Syst., 2022, 127, p 263–275.CrossRef
26.
go back to reference D. Gu and B. He, Finite Element Simulation and Experimental Investigation of Residual Stresses in Selective Laser Melted Ti–Ni Shape Memory Alloy, Comput. Mater. Sci., 2016, 117, p 221–232.CrossRef D. Gu and B. He, Finite Element Simulation and Experimental Investigation of Residual Stresses in Selective Laser Melted Ti–Ni Shape Memory Alloy, Comput. Mater. Sci., 2016, 117, p 221–232.CrossRef
27.
go back to reference R. Liu, S. Xu, X. Shao, Y. Wen, X. Shi, J. Hu and Z. Yang, Carbon Coating on Metal Oxide Materials for Electrochemical Energy Storage, Nanotechnology, 2021, 32(50), p 502004.CrossRef R. Liu, S. Xu, X. Shao, Y. Wen, X. Shi, J. Hu and Z. Yang, Carbon Coating on Metal Oxide Materials for Electrochemical Energy Storage, Nanotechnology, 2021, 32(50), p 502004.CrossRef
28.
go back to reference M. Bugatti and Q. Semeraro, Limitations of the inherent strain method in simulating powder bed fusion processes, Addit. Manuf., 2018, 23, p 329–346. M. Bugatti and Q. Semeraro, Limitations of the inherent strain method in simulating powder bed fusion processes, Addit. Manuf., 2018, 23, p 329–346.
29.
go back to reference L. Bass, J. Milner, T. Gnäupel-Herold, S. Moylan, Residual Stress in Additive Manufactured Nickel Alloy 625 Parts, J. Manuf. Sci. Eng. 140(6) (2018). L. Bass, J. Milner, T. Gnäupel-Herold, S. Moylan, Residual Stress in Additive Manufactured Nickel Alloy 625 Parts, J. Manuf. Sci. Eng. 140(6) (2018).
30.
go back to reference S. Afazov, W.A. Denmark, B.L. Toralles, A. Holloway and A. Yaghi, Distortion Prediction and Compensation in Selective Laser Melting, Addit. Manuf., 2017, 17, p 15–22. S. Afazov, W.A. Denmark, B.L. Toralles, A. Holloway and A. Yaghi, Distortion Prediction and Compensation in Selective Laser Melting, Addit. Manuf., 2017, 17, p 15–22.
31.
go back to reference G. Shuang, Z. Tan, L. Lan and B. He, Effects of geometrical size and structural feature on the shape-distortion behavior of hollow Ti-alloy blade fabricated by additive manufacturing process, J. Laser Appl., 2020, 32, p 032005.CrossRef G. Shuang, Z. Tan, L. Lan and B. He, Effects of geometrical size and structural feature on the shape-distortion behavior of hollow Ti-alloy blade fabricated by additive manufacturing process, J. Laser Appl., 2020, 32, p 032005.CrossRef
32.
go back to reference K. Dai and L.L. Shaw, Finite element analysis of the effect of volume shrinkage during laser densification, Acta Mater., 2005, 53(18), p 4743–4754.CrossRef K. Dai and L.L. Shaw, Finite element analysis of the effect of volume shrinkage during laser densification, Acta Mater., 2005, 53(18), p 4743–4754.CrossRef
33.
go back to reference A. Hussein, L. Hao, C. Yan and R.M. Everson, Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting, Mater. Des., 2013, 52, p 638–647.CrossRef A. Hussein, L. Hao, C. Yan and R.M. Everson, Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting, Mater. Des., 2013, 52, p 638–647.CrossRef
34.
go back to reference B.S. Yilbas and A.F.M. Arif, Material response to thermal loading due to short pulse laser heating, Int. J. Heat Mass Transf., 2001, 44(20), p 3787–3798.CrossRef B.S. Yilbas and A.F.M. Arif, Material response to thermal loading due to short pulse laser heating, Int. J. Heat Mass Transf., 2001, 44(20), p 3787–3798.CrossRef
35.
go back to reference S.A. Tsirkas, P. Papanikos and T.B. Kermanidis, Numerical simulation of the laser welding process in butt-joint specimens, J. Mater. Process. Technol., 2003, 134(1), p 59–69.CrossRef S.A. Tsirkas, P. Papanikos and T.B. Kermanidis, Numerical simulation of the laser welding process in butt-joint specimens, J. Mater. Process. Technol., 2003, 134(1), p 59–69.CrossRef
36.
go back to reference Z. Xiao, C. Chen, Z. Hu, H. Zhu and X. Zeng, Effect of rescanning cycles on the characteristics of selective laser melting of Ti6Al4V, Opt. Laser Technol., 2020, 122, p 105890.CrossRef Z. Xiao, C. Chen, Z. Hu, H. Zhu and X. Zeng, Effect of rescanning cycles on the characteristics of selective laser melting of Ti6Al4V, Opt. Laser Technol., 2020, 122, p 105890.CrossRef
37.
go back to reference Y.C.S. Shunyu Liu, Additive manufacturing of Ti6Al4V alloy: a review, Mater. Des., 2019, 164, p 1–23. Y.C.S. Shunyu Liu, Additive manufacturing of Ti6Al4V alloy: a review, Mater. Des., 2019, 164, p 1–23.
38.
go back to reference H. Ali, L. Ma, H. Ghadbeigi and K. Mumtaz, In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V, Mater. Sci. Eng. A, 2017, 695, p 211–220.CrossRef H. Ali, L. Ma, H. Ghadbeigi and K. Mumtaz, In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V, Mater. Sci. Eng. A, 2017, 695, p 211–220.CrossRef
39.
go back to reference S. Gao, Z.J. Tan, L. Lan and B. He, Effects of geometrical size and structural feature on the shape-distortion behavior of hollow Ti-alloy blade fabricated by additive manufacturing process, J. Laser Appl., 2020, 32, p 3.CrossRef S. Gao, Z.J. Tan, L. Lan and B. He, Effects of geometrical size and structural feature on the shape-distortion behavior of hollow Ti-alloy blade fabricated by additive manufacturing process, J. Laser Appl., 2020, 32, p 3.CrossRef
40.
go back to reference G. Vastola, G. Zhang, Q. Pei and Y.W. Zhang, Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling, Add. Manuf., 2016, 12, p 231–239. G. Vastola, G. Zhang, Q. Pei and Y.W. Zhang, Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling, Add. Manuf., 2016, 12, p 231–239.
41.
go back to reference N.S. Bailey, W. Tan and Y.C. Shin, Predictive modeling and experimental results for residual stresses in laser hardening of AISI 4140 steel by a high power diode laser, Surf. Coat. Technol., 2009, 203(14), p 2003–2012.CrossRef N.S. Bailey, W. Tan and Y.C. Shin, Predictive modeling and experimental results for residual stresses in laser hardening of AISI 4140 steel by a high power diode laser, Surf. Coat. Technol., 2009, 203(14), p 2003–2012.CrossRef
42.
go back to reference P. Mercelis and J. Kruth, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyp. J., 2006, 12(5), p 254–265.CrossRef P. Mercelis and J. Kruth, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyp. J., 2006, 12(5), p 254–265.CrossRef
43.
go back to reference Y. Liu, Y. Yang and D. Wang, A study on the residual stress during selective laser melting (SLM) of metallic powder, Int. J. Adv. Manuf. Technol., 2016, 87(1), p 647–656.CrossRef Y. Liu, Y. Yang and D. Wang, A study on the residual stress during selective laser melting (SLM) of metallic powder, Int. J. Adv. Manuf. Technol., 2016, 87(1), p 647–656.CrossRef
44.
go back to reference Z. Wang, E. Denlinger, P. Michaleris, A.D. Stoica, D. Ma and A.M. Beese, Residual stress mapping in Inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions, Mater. Des., 2017, 113, p 169–177.CrossRef Z. Wang, E. Denlinger, P. Michaleris, A.D. Stoica, D. Ma and A.M. Beese, Residual stress mapping in Inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions, Mater. Des., 2017, 113, p 169–177.CrossRef
45.
go back to reference S. Afazov, W.A.D. Denmark, B. Lazaro Toralles, A. Holloway and A. Yaghi, Distortion prediction and compensation in selective laser melting, Addit. Manuf., 2017, 17, p 15–22. S. Afazov, W.A.D. Denmark, B. Lazaro Toralles, A. Holloway and A. Yaghi, Distortion prediction and compensation in selective laser melting, Addit. Manuf., 2017, 17, p 15–22.
Metadata
Title
Experimental Investigation and Numerical Simulation of Residual Stress and Distortion of Ti6Al4V Components Manufactured Using Selective Laser Melting
Authors
Shuang Gao
Zhijun Tan
Liang Lan
Guoxin Lu
Bo He
Publication date
11-04-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06815-3

Other articles of this Issue 10/2022

Journal of Materials Engineering and Performance 10/2022 Go to the issue

Premium Partners