Skip to main content
Top
Published in: Advances in Manufacturing 4/2013

01-12-2013

Experimental investigation on the effects of process parameters of GMAW and transient thermal analysis of AISI321 steel

Authors: A. G. Kamble, R. Venkata Rao

Published in: Advances in Manufacturing | Issue 4/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Gas metal arc welding (GMAW) develops an arc by controlling the metal from the wire rod and the input process parameters. The deposited metal forms a weld bead and the mechanical properties depend upon the quality of the weld bead. Proper control of the process parameters which affect the bead geometry, the microstructures of the weldments and the mechanical properties like hardness, is necessary. This experimental study aims at developing mathematical models for bead height (H B), bead width (W B) and bead penetration (P B) and investigating the effects of four process parameters viz: welding voltage, welding speed, wire feed rate and gas flow rate on bead geometry, hardness and microstructure of AISI321 steel with 10 mm thickness. The transient thermal analysis shows temperature and residual stress distributions at different conduction and convection conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Quintino L, Allum CJ (1981) Pulsed GMAW: interactions between process parameters-part 1. Weld Mater Fabr 85:5–9 Quintino L, Allum CJ (1981) Pulsed GMAW: interactions between process parameters-part 1. Weld Mater Fabr 85:5–9
2.
go back to reference Smati Z (1985) Automated pulsed MIG welding. Metal Constr 18:38–44 Smati Z (1985) Automated pulsed MIG welding. Metal Constr 18:38–44
3.
go back to reference Ganjigatti JP, Pratihar DK, Choudhary AR (2006) Modeling of the MIG welding process using statistical approaches. Int J Adv Manuf Technol 30:669–676CrossRef Ganjigatti JP, Pratihar DK, Choudhary AR (2006) Modeling of the MIG welding process using statistical approaches. Int J Adv Manuf Technol 30:669–676CrossRef
4.
go back to reference Tham G, Yaakub MY, Abas SK et al (2012) Predicting the GMAW 3F T-Fillet geometry and its welding parameter. Int Symp Robotics Intel Sens Procedia Eng 41:1794–1799 Tham G, Yaakub MY, Abas SK et al (2012) Predicting the GMAW 3F T-Fillet geometry and its welding parameter. Int Symp Robotics Intel Sens Procedia Eng 41:1794–1799
5.
go back to reference Xu W, Wu C, Zou D (2008) Predicting of bead undercut defects in high speed gas metal arc welding. Frontier Mater Sci 2:402–408CrossRef Xu W, Wu C, Zou D (2008) Predicting of bead undercut defects in high speed gas metal arc welding. Frontier Mater Sci 2:402–408CrossRef
6.
go back to reference Katherasan D, Elias JV, Sathiya P et al (2012) Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm. J Intell Manuf 12:675–684 Katherasan D, Elias JV, Sathiya P et al (2012) Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm. J Intell Manuf 12:675–684
7.
go back to reference Rao PS, Gupta OP, Murty SSN et al (2009) Effects of process parameters and mathematical model for the prediction of bead geometry in pulsed GMA welding. Int J Adv Manuf Technol 45:496–505 Rao PS, Gupta OP, Murty SSN et al (2009) Effects of process parameters and mathematical model for the prediction of bead geometry in pulsed GMA welding. Int J Adv Manuf Technol 45:496–505
8.
go back to reference Campbell SW, Galloway AM, McPherson NA (2012) Artificial neural network prediction of weld geometry performed using GMAW with alternating shielding gases. Weld J 91:174s–181s Campbell SW, Galloway AM, McPherson NA (2012) Artificial neural network prediction of weld geometry performed using GMAW with alternating shielding gases. Weld J 91:174s–181s
9.
go back to reference Ganjigatti JP, Pratihar DK, Choudhury AR (2007) Global versus cluster-wise regression analyses for prediction of bead geometry in MIG welding process. J Mater Process Technol 189:352–366CrossRef Ganjigatti JP, Pratihar DK, Choudhury AR (2007) Global versus cluster-wise regression analyses for prediction of bead geometry in MIG welding process. J Mater Process Technol 189:352–366CrossRef
10.
go back to reference Shiang SJ, Fong TY, Bin YJ (2011) Principal component analysis for multiple quality characteristics optimization of metal inert gas welding aluminum foam plate. Mater Des 32:1253–1261CrossRef Shiang SJ, Fong TY, Bin YJ (2011) Principal component analysis for multiple quality characteristics optimization of metal inert gas welding aluminum foam plate. Mater Des 32:1253–1261CrossRef
11.
go back to reference Pal S, Pal SK, Samantaray AK (2008) Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals. J Mater Process Technol 202:464–474CrossRef Pal S, Pal SK, Samantaray AK (2008) Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals. J Mater Process Technol 202:464–474CrossRef
12.
go back to reference Malviya R, Pratihar DK (2011) Tuning of neural networks using particle swarm optimization to model MIG welding process. Swarm Evolut Comput 1:223–235CrossRef Malviya R, Pratihar DK (2011) Tuning of neural networks using particle swarm optimization to model MIG welding process. Swarm Evolut Comput 1:223–235CrossRef
13.
go back to reference Benyounis KY, Olabi AG (2008) Optimization of different welding process using statistical and numerical approaches: a reference guide. Adv Eng Softw 39:483–496CrossRef Benyounis KY, Olabi AG (2008) Optimization of different welding process using statistical and numerical approaches: a reference guide. Adv Eng Softw 39:483–496CrossRef
14.
go back to reference Palani PK, Murugan N (2007) Optimization of weld bead geometry for stainless steel claddings deposited by FCAW. J Mater Process Technol 190:291–299CrossRef Palani PK, Murugan N (2007) Optimization of weld bead geometry for stainless steel claddings deposited by FCAW. J Mater Process Technol 190:291–299CrossRef
15.
go back to reference Murugan N, Parmar RS (1994) Effects of MIG process parameters on the geometry of the bead in the automatic surfacing of stainless steel. J Mater Process Technol 41:381–398CrossRef Murugan N, Parmar RS (1994) Effects of MIG process parameters on the geometry of the bead in the automatic surfacing of stainless steel. J Mater Process Technol 41:381–398CrossRef
16.
go back to reference Cochran WG, Cox GM (1957) Experimental designs. Wiley, New YorkMATH Cochran WG, Cox GM (1957) Experimental designs. Wiley, New YorkMATH
17.
go back to reference Sudhakaran R, Murugan V, Sethilkumar KM et al (2011) Effects of welding process parameters on weld bead geometry and optimization of process parameters to maximize depth to width ratio for stainless steel gas tungsten arc welded plates using genetic algorithm. J Sci Res 62:76–94 Sudhakaran R, Murugan V, Sethilkumar KM et al (2011) Effects of welding process parameters on weld bead geometry and optimization of process parameters to maximize depth to width ratio for stainless steel gas tungsten arc welded plates using genetic algorithm. J Sci Res 62:76–94
18.
go back to reference Systat (1991) SYSTAT version 12. Systat Inc, San Jose Systat (1991) SYSTAT version 12. Systat Inc, San Jose
19.
go back to reference Hamza RMA, Aloraier A, Al-Faraj EA (2011) Investigation of the effect of welding polarity on joint bead geometry and mechanical properties of shielded metal arc welding process. J Eng Technol 2:100–111 Hamza RMA, Aloraier A, Al-Faraj EA (2011) Investigation of the effect of welding polarity on joint bead geometry and mechanical properties of shielded metal arc welding process. J Eng Technol 2:100–111
20.
go back to reference Kolhe KP, Datta CK (2008) Prediction of microstructure and mechanical properties of multipass SAW. J Mater Process Technol 197:241–249CrossRef Kolhe KP, Datta CK (2008) Prediction of microstructure and mechanical properties of multipass SAW. J Mater Process Technol 197:241–249CrossRef
21.
go back to reference Capriccioli A, Frosi P (2009) Multipurpose ANSYS FE procedure for welding processes simulation. Fus Eng Des 84:546–553CrossRef Capriccioli A, Frosi P (2009) Multipurpose ANSYS FE procedure for welding processes simulation. Fus Eng Des 84:546–553CrossRef
22.
go back to reference Kong F, Ma J, Kovacevic R (2011) Numerical and experimental study of thermally induced residual stress in the hybrid laser-GMA welding process. J Mater Process Technol 211:1102–1111CrossRef Kong F, Ma J, Kovacevic R (2011) Numerical and experimental study of thermally induced residual stress in the hybrid laser-GMA welding process. J Mater Process Technol 211:1102–1111CrossRef
Metadata
Title
Experimental investigation on the effects of process parameters of GMAW and transient thermal analysis of AISI321 steel
Authors
A. G. Kamble
R. Venkata Rao
Publication date
01-12-2013
Publisher
Springer Berlin Heidelberg
Published in
Advances in Manufacturing / Issue 4/2013
Print ISSN: 2095-3127
Electronic ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-013-0041-2

Other articles of this Issue 4/2013

Advances in Manufacturing 4/2013 Go to the issue

Premium Partners