Skip to main content
Top

2019 | OriginalPaper | Chapter

Experimental Investigations into Performance Evaluation of Thermosyphon Solar Heating System Using Modified PCM Modules

Authors : T. K. Naveen, T. Jagadesh

Published in: Advances in Fluid and Thermal Engineering

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The demand for effective and efficient use of solar heating arrangement is increasing in domestic and industrial applications. The existing renewable energy resources are intermittent and fluctuate depending upon the meteorological conditions. So, the main aim of this present work is to develop thermosyphon solar heating system for improving the performance using modified phase change material (PCM) modules. Paraffin wax material is used as PCM for holding the heat energy to attain an effective solar fraction. A detailed stratification experimental analysis for heat energy accumulation tank has been carried out on without PCM, PCM without fins, PCM with ring type fins and spiral fins. An hourly based charging and discharging efficiency are also calculated for the above cases and compared. All the experiments are carried out three times and average values are taken for the analysis. From the results measured experimentally, it is inferred that the discharging time of solar water heating system with cylindrical PCM ring type fins is 3 h more than without PCM. The discharging time of solar water heating system with cylindrical PCM took 7 h more than without PCM. The charging energy efficiency of heat energy accumulation tank with cylindrical PCM ring type and PCM in spiral module fins confers better results than cylindrical PCM and without PCM. This shows that the PCM get better stratification time and increases the overall performance of solar water heating system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Huang MJ, Eames PC, McCormack S, Griffiths P, Hewitt NJ (2011) Microencapsulated phase change slurries for thermal energy storage in a residential solar energy system. Renew Energy 36:2932–2939CrossRef Huang MJ, Eames PC, McCormack S, Griffiths P, Hewitt NJ (2011) Microencapsulated phase change slurries for thermal energy storage in a residential solar energy system. Renew Energy 36:2932–2939CrossRef
2.
go back to reference Castell A, Solé C, Medrano M, Roca J, Cabeza LF, García D (2008) Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Appl Therm Eng 28:1676–1686CrossRef Castell A, Solé C, Medrano M, Roca J, Cabeza LF, García D (2008) Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Appl Therm Eng 28:1676–1686CrossRef
3.
go back to reference Jesumathy SP, Udayakumar M, Suresh S (2012) Heat transfer characteristics in latent heat storage system using paraffin wax. J Mech Sci Technol 26:959–965CrossRef Jesumathy SP, Udayakumar M, Suresh S (2012) Heat transfer characteristics in latent heat storage system using paraffin wax. J Mech Sci Technol 26:959–965CrossRef
4.
go back to reference Wu S, Fang G (2011) Dynamic performances of solar heat storage system with packed bed using myristic acid as phase change material. Energy Build 43:1091–1096CrossRef Wu S, Fang G (2011) Dynamic performances of solar heat storage system with packed bed using myristic acid as phase change material. Energy Build 43:1091–1096CrossRef
5.
go back to reference Garnier C, Currie J, Muneer T (2009) Integrated collector storage solar water heater: temperature stratification. Appl Energy 86:1465–1469CrossRef Garnier C, Currie J, Muneer T (2009) Integrated collector storage solar water heater: temperature stratification. Appl Energy 86:1465–1469CrossRef
6.
go back to reference Murali G, Mayilsamy K, Arjunan TV (2015) An experimental study of PCM-incorporated thermosyphon solar water heating system. Int J Green Energy 12:978–986CrossRef Murali G, Mayilsamy K, Arjunan TV (2015) An experimental study of PCM-incorporated thermosyphon solar water heating system. Int J Green Energy 12:978–986CrossRef
7.
go back to reference Mondol JD, Smyth M, Zacharopoulos A (2011) Experimental characterisation of a novel heat exchanger for a solar hot water application under indoor and outdoor conditions. Renew Energy 36:1766–1779CrossRef Mondol JD, Smyth M, Zacharopoulos A (2011) Experimental characterisation of a novel heat exchanger for a solar hot water application under indoor and outdoor conditions. Renew Energy 36:1766–1779CrossRef
8.
go back to reference Ait Hammou Z, Lacroix M (2006) A new PCM storage system for managing simultaneously solar and electric energy. Energy Build 38:258–265CrossRef Ait Hammou Z, Lacroix M (2006) A new PCM storage system for managing simultaneously solar and electric energy. Energy Build 38:258–265CrossRef
9.
go back to reference Khalifa AJN, Suffer KH, Mahmoud MS (2013) A storage domestic solar hot water system with a back layer of phase change material. Exp Thermal Fluid Sci 44:174–181CrossRef Khalifa AJN, Suffer KH, Mahmoud MS (2013) A storage domestic solar hot water system with a back layer of phase change material. Exp Thermal Fluid Sci 44:174–181CrossRef
10.
go back to reference Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13:318–345CrossRef Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13:318–345CrossRef
11.
go back to reference Felix Regin A, Solanki SC, Saini JS (2009) An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: numerical investigation. Renew Energy 34:1765–1773CrossRef Felix Regin A, Solanki SC, Saini JS (2009) An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: numerical investigation. Renew Energy 34:1765–1773CrossRef
12.
go back to reference Knudsen S, Furbo S (2004) Thermal stratification in vertical mantle heat-exchangers with application to solar domestic hot-water systems. Appl Energy 78:257–272CrossRef Knudsen S, Furbo S (2004) Thermal stratification in vertical mantle heat-exchangers with application to solar domestic hot-water systems. Appl Energy 78:257–272CrossRef
13.
go back to reference Selvaraj J, Thenarasu M, Aravind S, Ashok P (2015) Waste heat recovery from castings and scrap preheating by recovered heat using an intermediate heat transfer medium. Appl Mech Mater 813–814:776–781CrossRef Selvaraj J, Thenarasu M, Aravind S, Ashok P (2015) Waste heat recovery from castings and scrap preheating by recovered heat using an intermediate heat transfer medium. Appl Mech Mater 813–814:776–781CrossRef
14.
go back to reference Parthasarathy P, Talukdar P, Kishore VR (2009) Enhancement of heat transfer with porous/solid insert for laminar flow of a participating gas in a 3-D square duct. Num Heat Transf Part A Appl 56:764–784CrossRef Parthasarathy P, Talukdar P, Kishore VR (2009) Enhancement of heat transfer with porous/solid insert for laminar flow of a participating gas in a 3-D square duct. Num Heat Transf Part A Appl 56:764–784CrossRef
15.
go back to reference Selvaraj J, Jawahar CC, Bhatija KA, Thenagan S (2015) Preheating metal scrap in foundries using solar thermal energy. Appl Mech Mater 813–814:760–767CrossRef Selvaraj J, Jawahar CC, Bhatija KA, Thenagan S (2015) Preheating metal scrap in foundries using solar thermal energy. Appl Mech Mater 813–814:760–767CrossRef
16.
go back to reference Gopi Krishnan R, Venkatesan V, Nayak P, Yadav AK, Rajesh VR (2015) Performance analysis and thermal modeling of a solar flat plate collector with concave ridged profile Gopi Krishnan R, Venkatesan V, Nayak P, Yadav AK, Rajesh VR (2015) Performance analysis and thermal modeling of a solar flat plate collector with concave ridged profile
17.
go back to reference Fernández-Seara J, Uhia FJ, Sieres J (2007) Experimental analysis of a domestic electric hot water storage tank. Part II: dynamic mode of operation. Appl Therm Eng 27:137–144 Fernández-Seara J, Uhia FJ, Sieres J (2007) Experimental analysis of a domestic electric hot water storage tank. Part II: dynamic mode of operation. Appl Therm Eng 27:137–144
Metadata
Title
Experimental Investigations into Performance Evaluation of Thermosyphon Solar Heating System Using Modified PCM Modules
Authors
T. K. Naveen
T. Jagadesh
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-6416-7_20

Premium Partners