Skip to main content
Top
Published in: Bulletin of Engineering Geology and the Environment 10/2020

12-07-2020 | Original Paper

Experimental investigations of the dynamic mechanical properties and fracturing behavior of cracked rocks under dynamic loading

Authors: Zelin Yan, Feng Dai, Yi Liu, Hongbo Du

Published in: Bulletin of Engineering Geology and the Environment | Issue 10/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cracked rocks are quite susceptible to dynamic loading from drilling, blasting, and impacting events. Understanding the dynamic response of cracked rocks under dynamic loadings is crucial for the assessment of rock structure stability. In this study, dynamic compression tests were carried out on rock specimens with multiple parallel cracks using a split Hopkinson pressure bar apparatus. Effects of strain rate and crack intensity on dynamic responses, including strength and deformation properties, progressive failure behavior, rock fragmentation characteristics, and energy dissipation of cracked rock specimens, were systematically investigated. Stress–strain curves migrate from class I curves into class II with increasing strain rate. Dynamic strength shows clear rate dependence while dynamic elastic modulus is independent of strain rate. Progressive failure behavior of cracked rock specimens under high loading rates was analyzed using high-speed photography and digital image correlation technique. Results show that the X-shaped shear failure mode is the final failure modes of all specimens, regardless of crack intensity. Fragmentation analysis indicates that increasing strain rate intensifies fragmentation, decreases mean fragment size, and increases fractal dimension of rock fragments. At low strain rates, specimens remain unbroken or slightly spilt; at high strain rates, specimens are systematically pulverized. Energy utilization efficiency decreases while energy dissipation density increases with increasing strain rate. For a given strain rate, crack intensity has no significant influences on energy dissipation and fragmentation characteristics of cracked rock specimens under dynamic loading.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ai D, Zhao Y, Wang Q, Li C (2019) Experimental and numerical investigation of crack propagation and dynamic properties of rock in SHPB indirect tension test. Int J Impact Eng 126:135–146 Ai D, Zhao Y, Wang Q, Li C (2019) Experimental and numerical investigation of crack propagation and dynamic properties of rock in SHPB indirect tension test. Int J Impact Eng 126:135–146
go back to reference Cai M, Kaiser PK, Suorineni F, Su K (2007) A study on the dynamic behavior of the Meuse/Haute-Marne argillite. Phys Chem Earth 32(8–14):907–916 Cai M, Kaiser PK, Suorineni F, Su K (2007) A study on the dynamic behavior of the Meuse/Haute-Marne argillite. Phys Chem Earth 32(8–14):907–916
go back to reference Carpinteri A, Lacidogna G, Pugno N (2004) Scaling of energy dissipation in crushing and fragmentation: a fractal and statistical analysis based on particle size distribution. Int J Fracture 129(2):131–139 Carpinteri A, Lacidogna G, Pugno N (2004) Scaling of energy dissipation in crushing and fragmentation: a fractal and statistical analysis based on particle size distribution. Int J Fracture 129(2):131–139
go back to reference Dai F, Huang S, Xia K, Tan Z (2010) Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43(6):657–666 Dai F, Huang S, Xia K, Tan Z (2010) Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43(6):657–666
go back to reference Du H, Dai F, Xu Y, Liu Y, Xu H (2018) Numerical investigation on the dynamic strength and failure behavior of rocks under hydrostatic confinement in SHPB testing. Int J Rock Mech Min 108:43–57 Du H, Dai F, Xu Y, Liu Y, Xu H (2018) Numerical investigation on the dynamic strength and failure behavior of rocks under hydrostatic confinement in SHPB testing. Int J Rock Mech Min 108:43–57
go back to reference Du H, Dai F, Liu Y, Xu Y, Wei M (2020a) Dynamic response and failure mechanism of hydrostatically pressurized rocks subjected to high loading rate impacting. Soil Dyn Earthq Eng 129:105927 Du H, Dai F, Liu Y, Xu Y, Wei M (2020a) Dynamic response and failure mechanism of hydrostatically pressurized rocks subjected to high loading rate impacting. Soil Dyn Earthq Eng 129:105927
go back to reference Du H, Dai F, Xu Y, Yan Z, Wei M (2020b) Mechanical responses and failure mechanism of hydrostatically pressurized rocks under combined compression-shear impacting. Int J Mech Sci 165:105219 Du H, Dai F, Xu Y, Yan Z, Wei M (2020b) Mechanical responses and failure mechanism of hydrostatically pressurized rocks under combined compression-shear impacting. Int J Mech Sci 165:105219
go back to reference Duan K, Li Y, Wang L, Zhao G, Wu W (2019) Dynamic responses and failure modes of stratified sedimentary rocks. Int J Rock Mech Min 122:104060 Duan K, Li Y, Wang L, Zhao G, Wu W (2019) Dynamic responses and failure modes of stratified sedimentary rocks. Int J Rock Mech Min 122:104060
go back to reference Feng P, Dai F, Liu Y, Xu N, Fan P (2018) Effects of coupled static and dynamic strain rates on mechanical behaviors of rock-like specimens containing pre-existing fissures under uniaxial compression. Can Geotech J 55(5):640–652 Feng P, Dai F, Liu Y, Xu N, Fan P (2018) Effects of coupled static and dynamic strain rates on mechanical behaviors of rock-like specimens containing pre-existing fissures under uniaxial compression. Can Geotech J 55(5):640–652
go back to reference Frew DJ, Forrestal MJ, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials. Exp Mech 41(1):40–46 Frew DJ, Forrestal MJ, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials. Exp Mech 41(1):40–46
go back to reference Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42(1):93–106 Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42(1):93–106
go back to reference Gao G, Yao W, Xia K, Li Z (2015) Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method. Eng Fract Mech 138:146–155 Gao G, Yao W, Xia K, Li Z (2015) Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method. Eng Fract Mech 138:146–155
go back to reference Grady DE (2008) Fragment size distributions from the dynamic fragmentation of brittle solids. Int J Impact Eng 35(12):1557–1562 Grady DE (2008) Fragment size distributions from the dynamic fragmentation of brittle solids. Int J Impact Eng 35(12):1557–1562
go back to reference Grady DE (2010) Length scales and size distributions in dynamic fragmentation. Int J Fracture 163(1–2):85–99 Grady DE (2010) Length scales and size distributions in dynamic fragmentation. Int J Fracture 163(1–2):85–99
go back to reference Grady DE, Winfree NA (2001) Impact fragmentation of high-velocity compact projectiles on thin plates: a physical and statistical characterization of fragment debris. Int J Impact Eng 26(1–10):249–262 Grady DE, Winfree NA (2001) Impact fragmentation of high-velocity compact projectiles on thin plates: a physical and statistical characterization of fragment debris. Int J Impact Eng 26(1–10):249–262
go back to reference Gray GT (2000) Classic split-Hopkinson pressure bar testing. ASM handbook. Mechanical testing and evaluation, vol 8. ASM Int, Materials Park, pp 462–476 Gray GT (2000) Classic split-Hopkinson pressure bar testing. ASM handbook. Mechanical testing and evaluation, vol 8. ASM Int, Materials Park, pp 462–476
go back to reference Hokka M, Black J, Tkalich D et al (2016) Effects of strain rate and confining pressure on the compressive behavior of Kuru granite. Int J Impact Eng 91:183–193 Hokka M, Black J, Tkalich D et al (2016) Effects of strain rate and confining pressure on the compressive behavior of Kuru granite. Int J Impact Eng 91:183–193
go back to reference Hong L, Zhou Z, Yin T, Liao G, Ye Z (2009) Energy consumption in rock fragmentation at intermediate strain rate. J Cent S Univ Technol 16:0677–0682 Hong L, Zhou Z, Yin T, Liao G, Ye Z (2009) Energy consumption in rock fragmentation at intermediate strain rate. J Cent S Univ Technol 16:0677–0682
go back to reference Kipp ME, Grady DE, Chen EP (1980) Strain-rate dependent fracture initiation. Int J Fracture 16(5):471–478 Kipp ME, Grady DE, Chen EP (1980) Strain-rate dependent fracture initiation. Int J Fracture 16(5):471–478
go back to reference Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society. Section B 62(11):676–700 Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society. Section B 62(11):676–700
go back to reference Li XB, Lok TS, Zhao J (2005) Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech Rock Eng 38(1):21–39 Li XB, Lok TS, Zhao J (2005) Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech Rock Eng 38(1):21–39
go back to reference Li X, Zhou Z, Lok T, Hong L, Yin T (2008) Innovative testing technique of rock subjected to coupled static and dynamic loads. Int J Rock Mech Min 45(5):739–748 Li X, Zhou Z, Lok T, Hong L, Yin T (2008) Innovative testing technique of rock subjected to coupled static and dynamic loads. Int J Rock Mech Min 45(5):739–748
go back to reference Li X, Zhou T, Li D (2017) Dynamic strength and fracturing behavior of single-flawed prismatic marble specimens under impact loading with a split-Hopkinson pressure bar. Rock Mech Rock Eng 50(1):29–44 Li X, Zhou T, Li D (2017) Dynamic strength and fracturing behavior of single-flawed prismatic marble specimens under impact loading with a split-Hopkinson pressure bar. Rock Mech Rock Eng 50(1):29–44
go back to reference Li XF, Li HB, Zhang QB, Jiang JL, Zhao J (2018) Dynamic fragmentation of rock material: characteristic size, fragment distribution and pulverization law. Eng Fract Mech 199:739–759 Li XF, Li HB, Zhang QB, Jiang JL, Zhao J (2018) Dynamic fragmentation of rock material: characteristic size, fragment distribution and pulverization law. Eng Fract Mech 199:739–759
go back to reference Li D, Han Z, Sun X, Zhou T, Li X (2019) Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests. Rock Mech Rock Eng 52(6):1623–1643 Li D, Han Z, Sun X, Zhou T, Li X (2019) Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests. Rock Mech Rock Eng 52(6):1623–1643
go back to reference Li A, Liu Y, Dai F, Liu K, Wei M (2020) Continuum analysis of the structurally controlled displacements for large-scale underground caverns in bedded rock masses. Tunn Undergr Space Technol 97:103288 Li A, Liu Y, Dai F, Liu K, Wei M (2020) Continuum analysis of the structurally controlled displacements for large-scale underground caverns in bedded rock masses. Tunn Undergr Space Technol 97:103288
go back to reference Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):62001 Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):62001
go back to reference Pan B, Lu Z, Xie H (2010) Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation. Opt Laser Eng 48(4):469–477 Pan B, Lu Z, Xie H (2010) Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation. Opt Laser Eng 48(4):469–477
go back to reference Song B, Chen W (2006) Energy for specimen deformation in a split Hopkinson pressure bar experiment. Exp Mech 46(3):407–410 Song B, Chen W (2006) Energy for specimen deformation in a split Hopkinson pressure bar experiment. Exp Mech 46(3):407–410
go back to reference Wei Q (2007) Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses. J Mater Sci 42(5):1709–1727 Wei Q (2007) Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses. J Mater Sci 42(5):1709–1727
go back to reference Weng L, Wu Z, Liu Q (2019a) Influence of heating/cooling cycles on the micro/macrocracking characteristics of Rucheng granite under unconfined compression. B Eng Geol Environ Weng L, Wu Z, Liu Q (2019a) Influence of heating/cooling cycles on the micro/macrocracking characteristics of Rucheng granite under unconfined compression. B Eng Geol Environ
go back to reference Weng L, Wu Z, Liu Q, Wang Z (2019b) Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures. Eng Fract Mech 220:106659 Weng L, Wu Z, Liu Q, Wang Z (2019b) Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures. Eng Fract Mech 220:106659
go back to reference Wong LNY, Einstein HH (2009a) Crack coalescence in molded gypsum and Carrara marble: part 1-macroscopic observations and interpretation. Rock Mech Rock Eng 42(3):475–511 Wong LNY, Einstein HH (2009a) Crack coalescence in molded gypsum and Carrara marble: part 1-macroscopic observations and interpretation. Rock Mech Rock Eng 42(3):475–511
go back to reference Wong LNY, Einstein HH (2009b) Crack coalescence in molded gypsum and Carrara marble: part 2-microscopic observations and interpretation. Rock Mech Rock Eng 42(3):513–545 Wong LNY, Einstein HH (2009b) Crack coalescence in molded gypsum and Carrara marble: part 2-microscopic observations and interpretation. Rock Mech Rock Eng 42(3):513–545
go back to reference Wong LNY, Einstein HH (2009c) Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int J Rock Mech Min Sci 46:239–249 Wong LNY, Einstein HH (2009c) Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int J Rock Mech Min Sci 46:239–249
go back to reference Wu W, Li H, Zhao J (2015) Dynamic responses of non-welded and welded rock fractures and implications for p-wave attenuation in a rock mass. Int J Rock Mech Min 77:174–181 Wu W, Li H, Zhao J (2015) Dynamic responses of non-welded and welded rock fractures and implications for p-wave attenuation in a rock mass. Int J Rock Mech Min 77:174–181
go back to reference Xia K, Yao W (2015) Dynamic rock tests using split Hopkinson (Kolsky) bar system – a review. J Rock Mech Geotech Eng 7(1):27–59 Xia K, Yao W (2015) Dynamic rock tests using split Hopkinson (Kolsky) bar system – a review. J Rock Mech Geotech Eng 7(1):27–59
go back to reference Xia K, Nasseri MHB, Mohanty B, Lu F, Chen R, Luo SN (2008) Effects of microstructures on dynamic compression of Barre granite. Int J Rock Mech Min 45(6):879–887 Xia K, Nasseri MHB, Mohanty B, Lu F, Chen R, Luo SN (2008) Effects of microstructures on dynamic compression of Barre granite. Int J Rock Mech Min 45(6):879–887
go back to reference Xing HZ, Zhang QB, Braithwaite CH, Pan B, Zhao J (2017) High-speed photography and digital optical measurement techniques for geomaterials: fundamentals and applications. Rock Mech Rock Eng 50(6):1611–1659 Xing HZ, Zhang QB, Braithwaite CH, Pan B, Zhao J (2017) High-speed photography and digital optical measurement techniques for geomaterials: fundamentals and applications. Rock Mech Rock Eng 50(6):1611–1659
go back to reference Xu Y, Dai F (2018) Dynamic response and failure mechanism of brittle rocks under combined compression-shear loading experiments. Rock Mech Rock Eng 51(3):747–764 Xu Y, Dai F (2018) Dynamic response and failure mechanism of brittle rocks under combined compression-shear loading experiments. Rock Mech Rock Eng 51(3):747–764
go back to reference Xu Y, Dai F, Du H (2020) Experimental and numerical studies on compression-shear behaviors of brittle rocks subjected to combined static-dynamic loading. Int J Mech Sci 175:105520 Xu Y, Dai F, Du H (2020) Experimental and numerical studies on compression-shear behaviors of brittle rocks subjected to combined static-dynamic loading. Int J Mech Sci 175:105520
go back to reference Yan Z, Dai F, Liu Y, Du H, Luo J (2020) Dynamic strength and cracking behaviors of single‑flawed rock subjected to coupled static–dynamic compression Yan Z, Dai F, Liu Y, Du H, Luo J (2020) Dynamic strength and cracking behaviors of single‑flawed rock subjected to coupled static–dynamic compression 
go back to reference Zhang QB, Zhao J (2013) Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min 60:423–439 Zhang QB, Zhao J (2013) Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min 60:423–439
go back to reference Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47(4):1411–1478 Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47(4):1411–1478
go back to reference Zhang ZX, Kou SQ, Jiang LG, Lindqvist PA (2000) Effects of loading rate on rock fracture: fracture characteristics and energy partitioning. Int J Rock Mech Min 37(5):745–762 Zhang ZX, Kou SQ, Jiang LG, Lindqvist PA (2000) Effects of loading rate on rock fracture: fracture characteristics and energy partitioning. Int J Rock Mech Min 37(5):745–762
go back to reference Zhao J, Zhou YX, Hefny AM et al (1999) Rock dynamics research related to cavern development for ammunition storage. Tunn Undergr Sp Tech 14(4):513–526 Zhao J, Zhou YX, Hefny AM et al (1999) Rock dynamics research related to cavern development for ammunition storage. Tunn Undergr Sp Tech 14(4):513–526
go back to reference Zhao C, Niu J, Zhang Q, Zhao C, Zhou Y (2019) Failure characteristics of rock-like materials with single flaws under uniaxial compression. B Eng Geol Environ 78(1):593–603 Zhao C, Niu J, Zhang Q, Zhao C, Zhou Y (2019) Failure characteristics of rock-like materials with single flaws under uniaxial compression. B Eng Geol Environ 78(1):593–603
go back to reference Zhou YX, Xia K, Li XB et al (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min 49:105–112 Zhou YX, Xia K, Li XB et al (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min 49:105–112
go back to reference Zou C, Wong LNY (2014) Experimental studies on cracking processes and failure in marble under dynamic loading. Eng Geol 173:19–31 Zou C, Wong LNY (2014) Experimental studies on cracking processes and failure in marble under dynamic loading. Eng Geol 173:19–31
go back to reference Zou C, Wong LNY, Loo JJ, Gan BS (2016) Different mechanical and cracking behaviors of single-flawed brittle gypsum specimens under dynamic and quasi-static loadings. Eng Geol 201:71–84 Zou C, Wong LNY, Loo JJ, Gan BS (2016) Different mechanical and cracking behaviors of single-flawed brittle gypsum specimens under dynamic and quasi-static loadings. Eng Geol 201:71–84
Metadata
Title
Experimental investigations of the dynamic mechanical properties and fracturing behavior of cracked rocks under dynamic loading
Authors
Zelin Yan
Feng Dai
Yi Liu
Hongbo Du
Publication date
12-07-2020
Publisher
Springer Berlin Heidelberg
Published in
Bulletin of Engineering Geology and the Environment / Issue 10/2020
Print ISSN: 1435-9529
Electronic ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-020-01914-8

Other articles of this Issue 10/2020

Bulletin of Engineering Geology and the Environment 10/2020 Go to the issue