Skip to main content


Swipe to navigate through the articles of this issue

03-08-2020 | Issue 6/2020 Open Access

Fire Technology 6/2020

Experimental Study of Self-heating Ignition of Lithium-Ion Batteries During Storage: Effect of the Number of Cells

Fire Technology > Issue 6/2020
Xuanze He, Francesco Restuccia, Yue Zhang, Zhenwen Hu, Xinyan Huang, Jun Fang, Guillermo Rein
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Lithium-ion batteries (LIBs) are widely used as energy storage devices. However, a disadvantage of these batteries is their tendency to ignite and burn, thereby creating a fire hazard. Ignition of LIBs can be triggered by abuse conditions (mechanical, electrical or thermal abuse) or internal short circuit. In addition, ignition could also be triggered by self-heating when LIBs are stacked during storage or transport. However, the open circuit self-heating ignition has received little attention and seems to be misunderstood in the literature. This paper quantifies the self-heating behaviour of LIB by means of isothermal oven experiments. Stacks of 1, 2, 3 and 4 Sanyo prismatic LiCoO2 cells at 30% state of charge were studied. The surface and central temperatures, voltage, and time to ignition were measured. Results show that self-heating ignition of open circuit LIBs is possible and its behaviour has three stages: heating up, self-heating and thermal runaway. We find for the first time that, for this battery type, as the number of cells increases from 1 to 4, the critical ambient temperature decreases from 165.5°C to 153°C. A Frank-Kamenetskii analysis using the measured data confirms that ignition is caused by self-heating. Parameters extracted from Frank-Kamenetskii theory are then used to upscale the laboratory results, which shows large enough LIB ensembles could self-ignite at even ambient temperatures. This is the first experimental study of the effect of the number of cells on self-heating ignition of LIBs, contributing to the understanding of this new fire hazard.

Our product recommendations

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

About this article

Other articles of this Issue 6/2020

Fire Technology 6/2020 Go to the issue