Skip to main content
Top
Published in: Experiments in Fluids 6/2017

01-06-2017 | Research Article

Experimental study of shock-accelerated inclined heavy gas cylinder

Authors: Dell Olmstead, Patrick Wayne, Jae-Hwun Yoo, Sanjay Kumar, C. Randall Truman, Peter Vorobieff

Published in: Experiments in Fluids | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An experimental study examines shock acceleration with an initially diffuse cylindrical column of sulfur hexafluoride surrounded by air and inclined with respect to the shock front. Three-dimensional vorticity deposition produces flow patterns whose evolution is captured with planar laser-induced fluorescence in two planes. Both planes are parallel to the direction of the shock propagation. The first plane is vertical and passes through the axis of the column. The second visualization plane is normal to the first plane and passes through the centerline of the shock tube. Vortex formation in the vertical and centerline planes is initially characterized by different rates and morphologies due to differences in initial vorticity deposition. In the vertical plane, the vortex structure manifests a periodicity that varies with Mach number. The dominant wavelength in the vertical plane can be related to the geometry and compressibility of the initial conditions. At later times, the vortex interaction produces a complex and irregular three-dimensional pattern suggesting transition to turbulence. Highly repeatable experimental data are presented for Mach numbers 1.13, 1.4, 1.7, and 2.0 at column incline angles of 0\(^{\circ }\), 20\(^{\circ }\), and 30\(^{\circ }\) for about 50 nominal cylinder diameters (30 cm) of downstream travel.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akula B, Suchandra P, Mikhaeil M, Ranjan D (2017) Dynamics of unstably stratified free shear flows: an experimental investigation of coupled Kelvin-Helmholtz and Rayleigh-Taylor instability. J Fluid Mech 816:619–660CrossRef Akula B, Suchandra P, Mikhaeil M, Ranjan D (2017) Dynamics of unstably stratified free shear flows: an experimental investigation of coupled Kelvin-Helmholtz and Rayleigh-Taylor instability. J Fluid Mech 816:619–660CrossRef
go back to reference Anderson MJ (2011) Oblique shock interactions with perturbed density interfaces. Ph.D. thesis, University of New Mexico Anderson MJ (2011) Oblique shock interactions with perturbed density interfaces. Ph.D. thesis, University of New Mexico
go back to reference Anderson M, Vorobieff P, Truman C, Corbin C, Kuehner G, Wayne P, Conroy J, White R, Kumar S (2015) An experimental and numerical study of shock interaction with a gas column seeded with droplets. Shock Waves 25(2):107–125CrossRef Anderson M, Vorobieff P, Truman C, Corbin C, Kuehner G, Wayne P, Conroy J, White R, Kumar S (2015) An experimental and numerical study of shock interaction with a gas column seeded with droplets. Shock Waves 25(2):107–125CrossRef
go back to reference Arnett D (2000) The role of mixing in astrophysics. Astrophys J Suppl Ser 127(2):213–217CrossRef Arnett D (2000) The role of mixing in astrophysics. Astrophys J Suppl Ser 127(2):213–217CrossRef
go back to reference Balakumar B, Orlicz G, Ristorcelli J, Balasubramanian S, Prestridge K, Tomkins C (2012) Turbulent mixing in a Richtmyer–Meshkov fluid layer after reshock: velocity and density statistics. J Fluid Mech 696:67–93CrossRefMATH Balakumar B, Orlicz G, Ristorcelli J, Balasubramanian S, Prestridge K, Tomkins C (2012) Turbulent mixing in a Richtmyer–Meshkov fluid layer after reshock: velocity and density statistics. J Fluid Mech 696:67–93CrossRefMATH
go back to reference Bernard T, Truman CR, Vorobieff P, Corbin C, Wayne P, Kuehner G, Anderson M, Kumar S (2015) Observation of the development of secondary features in a Richtmyer–Meshkov instability driven flow. J Fluids Eng 137(1):011206CrossRef Bernard T, Truman CR, Vorobieff P, Corbin C, Wayne P, Kuehner G, Anderson M, Kumar S (2015) Observation of the development of secondary features in a Richtmyer–Meshkov instability driven flow. J Fluids Eng 137(1):011206CrossRef
go back to reference Budil K, Remington B, Peyser T, Mikaelian K, Miller P, Woolsey N, Wood-Vasey W, Rubenchik A (1996) Experimental comparison of classical versus ablative Rayleigh–Taylor instability. Phys Rev Lett 76(24):4536–4539CrossRef Budil K, Remington B, Peyser T, Mikaelian K, Miller P, Woolsey N, Wood-Vasey W, Rubenchik A (1996) Experimental comparison of classical versus ablative Rayleigh–Taylor instability. Phys Rev Lett 76(24):4536–4539CrossRef
go back to reference Corbin C (2014) UNM shock tube modernization. Master’s thesis, University of New Mexico, Albuquerque, NM 87131, USA Corbin C (2014) UNM shock tube modernization. Master’s thesis, University of New Mexico, Albuquerque, NM 87131, USA
go back to reference Currie IG (2013) Fundamental mechanics of fluids, 4th edn, Ch. 3. CRC Press, Taylor and Francis Group, Boca Raton Currie IG (2013) Fundamental mechanics of fluids, 4th edn, Ch. 3. CRC Press, Taylor and Francis Group, Boca Raton
go back to reference Fishbine B (2002) Code validation experiments. Los Alamos Res Q Fall 2002:6–14 Fishbine B (2002) Code validation experiments. Los Alamos Res Q Fall 2002:6–14
go back to reference Haas J-F (1995) Experiments and simulations on shock waves in non-homogeneous gases. In: Brun R, Dumitrescu LZ (eds) Shock waves @ Marseille IV. Springer, Berlin, pp 27–36. doi:10.1007/978-3-642-79532-9_4 Haas J-F (1995) Experiments and simulations on shock waves in non-homogeneous gases. In: Brun R, Dumitrescu LZ (eds) Shock waves @ Marseille IV. Springer, Berlin, pp 27–36. doi:10.​1007/​978-3-642-79532-9_​4
go back to reference Haas J-F, Sturtevant B (1987) Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J Fluid Mech 181:41–76CrossRef Haas J-F, Sturtevant B (1987) Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J Fluid Mech 181:41–76CrossRef
go back to reference Henderson L, Colella P, Puckett E (1991) On the refraction of shock waves at a slow-fast gas interface. J Fluid Mech 224:1–27CrossRef Henderson L, Colella P, Puckett E (1991) On the refraction of shock waves at a slow-fast gas interface. J Fluid Mech 224:1–27CrossRef
go back to reference Jacobs JW (1993) The dynamics of shock accelerated light and heavy gas cylinders. Phys Fluids A 5(9):2239–2247CrossRef Jacobs JW (1993) The dynamics of shock accelerated light and heavy gas cylinders. Phys Fluids A 5(9):2239–2247CrossRef
go back to reference Jahn RG (1956) The refraction of shock waves at a gaseous interface. J Fluid Mech 1(05):457–489CrossRef Jahn RG (1956) The refraction of shock waves at a gaseous interface. J Fluid Mech 1(05):457–489CrossRef
go back to reference Kane J, Drake R, Remington B (1999) An evaluation of the Richtmyer–Meshkov instability in supernova remnant formation. Astrophys J 511(1):335CrossRef Kane J, Drake R, Remington B (1999) An evaluation of the Richtmyer–Meshkov instability in supernova remnant formation. Astrophys J 511(1):335CrossRef
go back to reference Kuehner G (2013) Behavior of the embedded phase in a shock-driven two-phase flow. Master’s thesis, The University of New Mexico, Albuquerque Kuehner G (2013) Behavior of the embedded phase in a shock-driven two-phase flow. Master’s thesis, The University of New Mexico, Albuquerque
go back to reference Kuehner G (2014) Behavior of the embedded phase in a shock-driven two-phase flow. Master’s thesis, University of New Mexico, Albuquerque, NM 87131, USA Kuehner G (2014) Behavior of the embedded phase in a shock-driven two-phase flow. Master’s thesis, University of New Mexico, Albuquerque, NM 87131, USA
go back to reference McCoy R (1999) Modern exterior ballistics: the launch and flight dynamics of symmetric projectiles. Schiffer Publishing, Atglen McCoy R (1999) Modern exterior ballistics: the launch and flight dynamics of symmetric projectiles. Schiffer Publishing, Atglen
go back to reference McFarland JA, Greenough JA, Ranjan D (2011) Computational parametric study of a Richtmyer–Meshkov instability for an inclined interface. Phys Rev E 84(2):026303CrossRef McFarland JA, Greenough JA, Ranjan D (2011) Computational parametric study of a Richtmyer–Meshkov instability for an inclined interface. Phys Rev E 84(2):026303CrossRef
go back to reference McFarland J, Reilly D, Creel S, McDonald C, Finn T, Ranjan D (2014a) Experimental investigation of the inclined interface Richtmyer–Meshkov instability before and after reshock. Exp Fluids 55(1):1–14CrossRef McFarland J, Reilly D, Creel S, McDonald C, Finn T, Ranjan D (2014a) Experimental investigation of the inclined interface Richtmyer–Meshkov instability before and after reshock. Exp Fluids 55(1):1–14CrossRef
go back to reference McFarland JA, Greenough JA, Ranjan D (2014b) Simulations and analysis of the reshocked inclined interface Richtmyer–Meshkov instability for linear and nonlinear interface perturbations. J Fluids Eng 136(7):071203 1–11. doi:10.1115/1.4026858 McFarland JA, Greenough JA, Ranjan D (2014b) Simulations and analysis of the reshocked inclined interface Richtmyer–Meshkov instability for linear and nonlinear interface perturbations. J Fluids Eng 136(7):071203 1–11. doi:10.​1115/​1.​4026858
go back to reference Olmstead D (2015) Oblique shock wave effects on impulsively accelerated heavy gas column. Ph.D. thesis, University of New Mexico Olmstead D (2015) Oblique shock wave effects on impulsively accelerated heavy gas column. Ph.D. thesis, University of New Mexico
go back to reference Orlicz G (2013) Incident shock Mach number effects on Richtmyer–Meshkov mixing with simultaneous density and velocity measurements. Ph.D. thesis, The University of New Mexico, Albuquerque Orlicz G (2013) Incident shock Mach number effects on Richtmyer–Meshkov mixing with simultaneous density and velocity measurements. Ph.D. thesis, The University of New Mexico, Albuquerque
go back to reference Reilly D, McFarland J, Mohaghar M, Ranjan D (2015) The effects of initial conditions and circulation deposition on the inclined-interface reshocked Richtmyer–Meshkov instability. Exp Fluids 56(8):168CrossRef Reilly D, McFarland J, Mohaghar M, Ranjan D (2015) The effects of initial conditions and circulation deposition on the inclined-interface reshocked Richtmyer–Meshkov instability. Exp Fluids 56(8):168CrossRef
go back to reference Richtmyer RD (1954) Taylor instability in shock acceleration of compressible fluids. Technical Report. LA-1914, Scientific Laboratory of the University of California, Los Alamos, New Mexico Richtmyer RD (1954) Taylor instability in shock acceleration of compressible fluids. Technical Report. LA-1914, Scientific Laboratory of the University of California, Los Alamos, New Mexico
go back to reference Roetzel W (2005) Analytical calculation of trajectories using a power law for the drag coefficient variation with Mach number. WIT Trans Model Simul 40:303–312 Roetzel W (2005) Analytical calculation of trajectories using a power law for the drag coefficient variation with Mach number. WIT Trans Model Simul 40:303–312
go back to reference Samtaney R, Zabusky NJ (1994) Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J Fluid Mech 269:45–78CrossRef Samtaney R, Zabusky NJ (1994) Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J Fluid Mech 269:45–78CrossRef
go back to reference SAS Institute (1990) SAS/STAT user’s guide, version 6, 4th edn. SAS Institute SAS Institute (1990) SAS/STAT user’s guide, version 6, 4th edn. SAS Institute
go back to reference Shiroto T, Ohnishi N, Sunahara A, Fujioka S, Sasaki A (2016) High-density implosion via suppression of Rayleigh–Taylor instability. In: Journal of Physics: conference series, vol 717. IOP Publishing, Bristol, p 012051 Shiroto T, Ohnishi N, Sunahara A, Fujioka S, Sasaki A (2016) High-density implosion via suppression of Rayleigh–Taylor instability. In: Journal of Physics: conference series, vol 717. IOP Publishing, Bristol, p 012051
go back to reference Smalyuk V, Hansen J, Hurricane O, Langstaff G, Martinez D, Park H-S, Raman K, Remington B, Robey H, Schilling O et al (2012) Experimental observations of turbulent mixing due to Kelvin–Helmholtz instability on the OMEGA laser facility. Phys Plasmas (1994-present) 19(9):092702CrossRef Smalyuk V, Hansen J, Hurricane O, Langstaff G, Martinez D, Park H-S, Raman K, Remington B, Robey H, Schilling O et al (2012) Experimental observations of turbulent mixing due to Kelvin–Helmholtz instability on the OMEGA laser facility. Phys Plasmas (1994-present) 19(9):092702CrossRef
go back to reference Takabe H, Mima K, Montierth L, Morse R (1985) Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma. Phys Fluids (1958–1988) 28(12):3676–3682MathSciNetCrossRefMATH Takabe H, Mima K, Montierth L, Morse R (1985) Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma. Phys Fluids (1958–1988) 28(12):3676–3682MathSciNetCrossRefMATH
go back to reference Ting S, Tong L, Zhaigang Z, Xisheng L (2015) Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. J Fluid Mech 784:225–251CrossRef Ting S, Tong L, Zhaigang Z, Xisheng L (2015) Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. J Fluid Mech 784:225–251CrossRef
go back to reference Tomkins C, Prestridge K, Rightley P, Vorobieff P, Benjamin R (2002) Flow morphologies of two shock-accelerated unstable gas cylinders. J Vis 5(3):273–283CrossRef Tomkins C, Prestridge K, Rightley P, Vorobieff P, Benjamin R (2002) Flow morphologies of two shock-accelerated unstable gas cylinders. J Vis 5(3):273–283CrossRef
go back to reference Tomkins C, Prestridge K, Rightley P, Marr-Lyon M, Vorobieff P, Benjamin R (2003) A quantitative study of the interaction of two Richtmyer–Meshkov-unstable gas cylinders. Phys Fluids 15(4):986–1004CrossRefMATH Tomkins C, Prestridge K, Rightley P, Marr-Lyon M, Vorobieff P, Benjamin R (2003) A quantitative study of the interaction of two Richtmyer–Meshkov-unstable gas cylinders. Phys Fluids 15(4):986–1004CrossRefMATH
go back to reference Truman C, Anderson M, Vorobieff P, Wayne P, Corbin C, Bernard T, Kuehner G (2013) Spike and vortex formation in an impulsively-accelerated multiphase medium. In: Brebbia CA, Vorobieff P (eds) Computational methods in multiphase flow VII, vol 79. WIT Press, Southampton, pp 127–134CrossRef Truman C, Anderson M, Vorobieff P, Wayne P, Corbin C, Bernard T, Kuehner G (2013) Spike and vortex formation in an impulsively-accelerated multiphase medium. In: Brebbia CA, Vorobieff P (eds) Computational methods in multiphase flow VII, vol 79. WIT Press, Southampton, pp 127–134CrossRef
go back to reference Wang X, Yang D, Wu J, Luo X (2015) Interaction of a weak shock wave with a discontinuous heavy-gas cylinder. Phys Fluids 27:064104CrossRef Wang X, Yang D, Wu J, Luo X (2015) Interaction of a weak shock wave with a discontinuous heavy-gas cylinder. Phys Fluids 27:064104CrossRef
go back to reference Weber CR, Haehn NS, Oakley JG, Rothamer DA, Bonazza R (2014) An experimental investigation of the turbulent mixing transition in the Richtmyer–Meshkov instability. J Fluid Mech 748:457–487CrossRef Weber CR, Haehn NS, Oakley JG, Rothamer DA, Bonazza R (2014) An experimental investigation of the turbulent mixing transition in the Richtmyer–Meshkov instability. J Fluid Mech 748:457–487CrossRef
go back to reference Wu C, Roberts P (1999) Richtmyer–Meshkov instability and the dynamics of the magnetosphere. Geophys Res Lett 26(6):655–658CrossRef Wu C, Roberts P (1999) Richtmyer–Meshkov instability and the dynamics of the magnetosphere. Geophys Res Lett 26(6):655–658CrossRef
go back to reference Vorobieff P, Tomkins C, Kumar S, Goodenough C, Mohamed N-G, Benjamin RF (2004) Secondary instabilities in shock-induced transition to turbulence. In: Rahman M, Brebbia CA, Mendes AC (eds) Advances in fluid mechanics V, vol 40. WIT Press, Southampton, pp 139–148 Vorobieff P, Tomkins C, Kumar S, Goodenough C, Mohamed N-G, Benjamin RF (2004) Secondary instabilities in shock-induced transition to turbulence. In: Rahman M, Brebbia CA, Mendes AC (eds) Advances in fluid mechanics V, vol 40. WIT Press, Southampton, pp 139–148
go back to reference Vorobieff P, Anderson M, Conroy J, White R, Truman CR, Kumar S (2012) Vortex deposition in shock-accelerated gas with particle/droplet seeding. In: Shock compression of condensed matter-2011: proceedings of the conference of the American Physical Society Topical Group on shock compression of condensed matter, vol 1426. AIP Publishing, pp 1651–1654 Vorobieff P, Anderson M, Conroy J, White R, Truman CR, Kumar S (2012) Vortex deposition in shock-accelerated gas with particle/droplet seeding. In: Shock compression of condensed matter-2011: proceedings of the conference of the American Physical Society Topical Group on shock compression of condensed matter, vol 1426. AIP Publishing, pp 1651–1654
go back to reference Wayne P, Olmstead D, Vorobieff P, Truman C, Kumar S (2015) Oblique shock interaction with a cylindrical density interface. In: Vorobieff P, Brebbia CA, Muñoz-Cobo JL (eds) Computational methods in multiphase flow VIII, vol 89. WIT Press, Southampton, pp 161–169CrossRef Wayne P, Olmstead D, Vorobieff P, Truman C, Kumar S (2015) Oblique shock interaction with a cylindrical density interface. In: Vorobieff P, Brebbia CA, Muñoz-Cobo JL (eds) Computational methods in multiphase flow VIII, vol 89. WIT Press, Southampton, pp 161–169CrossRef
go back to reference Yang J, Kubota T, Zukoski EE (1993) Applications of shock-induced mixing to supersonic combustion. AIAA J 31(5):854–862CrossRef Yang J, Kubota T, Zukoski EE (1993) Applications of shock-induced mixing to supersonic combustion. AIAA J 31(5):854–862CrossRef
go back to reference Zhai Z, Wang M, Si T, Luo X (2014) On the interaction of a planar shock with a light polygonal interface. J Fluid Mech 757:800–816CrossRef Zhai Z, Wang M, Si T, Luo X (2014) On the interaction of a planar shock with a light polygonal interface. J Fluid Mech 757:800–816CrossRef
go back to reference Zou L, Huang W, Liu C, Yu J, Luo X (2014) On the evolution of double shock-accelerated elliptic gas cylinders. J Fluids Eng 136(9):091205 Zou L, Huang W, Liu C, Yu J, Luo X (2014) On the evolution of double shock-accelerated elliptic gas cylinders. J Fluids Eng 136(9):091205
go back to reference Zou L, Liao S, Liu C, Wang Y, Zhai Z (2016) Aspect ratio effect on shock-accelerated elliptic gas cylinders. Phys Fluids 28:036101CrossRef Zou L, Liao S, Liu C, Wang Y, Zhai Z (2016) Aspect ratio effect on shock-accelerated elliptic gas cylinders. Phys Fluids 28:036101CrossRef
Metadata
Title
Experimental study of shock-accelerated inclined heavy gas cylinder
Authors
Dell Olmstead
Patrick Wayne
Jae-Hwun Yoo
Sanjay Kumar
C. Randall Truman
Peter Vorobieff
Publication date
01-06-2017
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 6/2017
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-017-2358-2

Other articles of this Issue 6/2017

Experiments in Fluids 6/2017 Go to the issue

Premium Partners