Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

05-12-2022 | Technical Article

Experimental Study of the Mechanical Behavior of Polyvinyl Chloride Foam under Shear Stress

Authors: Karim Mharsi, Jamal Fajoui, Pascal Casari, Mohamed Kchaou

Published in: Journal of Materials Engineering and Performance

Login to get access
share
SHARE

Abstract

The development of modern technologies requires the use of materials with high mechanical properties specific to their use, but with low densities. Composite materials with sandwich structure meet the above requirements, due to their low density, high strength, high rigidity and excellent durability. Despite of their advantages, sandwich structure is rather sensitive to failure by shear load of the core. Previous work has shown that standard shear characterization tests of sandwich structure (ASTM C273, Standard Test Method for Shear Properties of Sandwich Core Materials) exhibit shear stress concentrations at the edges, which negatively affect the results and validity of this test. To solve this issue, this research work aims to propose a new test methodology to determine shear properties using a torsion test. A custom assembly has been developed to exert a torsional moment on a cylindrical specimen made of PVC foam. Based on the experimental results, this new test approach for shear properties of Divinycell H200 provides more accurate characterization than the standard test by eliminating the phenomenon of concentration of shear stresses at the edge. Under shear fatigue test, the dominant failure mechanisms were the buckling of cell walls, which enhanced the strain and reduced the foam strength.
Literature
1.
go back to reference B. Castanie, C. Bouvet and M. Ginot, Review of Composite Sandwich Structure in Aeronautic Applications, Compos. Part C Open Access, 2020, 1, p 100004. CrossRef B. Castanie, C. Bouvet and M. Ginot, Review of Composite Sandwich Structure in Aeronautic Applications, Compos. Part C Open Access, 2020, 1, p 100004. CrossRef
2.
go back to reference T. Khan, V. Acar, M. Aydin, B. Hülagü, H. Akbulut and M. Seydibeyoğlu, A Review on Recent Advances in Sandwich Structures Based on Polyurethane Foam Cores, Polym. Compos., 2020, 41, p 2355–2400. CrossRef T. Khan, V. Acar, M. Aydin, B. Hülagü, H. Akbulut and M. Seydibeyoğlu, A Review on Recent Advances in Sandwich Structures Based on Polyurethane Foam Cores, Polym. Compos., 2020, 41, p 2355–2400. CrossRef
3.
go back to reference N. Sharma, R.F. Gibson and E.O. Ayorinde, Fatigue of Foam and Honeycomb Core Composite Sandwich Structures: A Tutorial, J. Sandw. Struct. Mater., 2006, 8(4), p 263–319. CrossRef N. Sharma, R.F. Gibson and E.O. Ayorinde, Fatigue of Foam and Honeycomb Core Composite Sandwich Structures: A Tutorial, J. Sandw. Struct. Mater., 2006, 8(4), p 263–319. CrossRef
4.
go back to reference L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, 1999. L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, 1999.
5.
go back to reference D. Zenkert, A. Shipsha and M. Burman, Fatigue of Closed Cell Foams, J. Sandw. Struct. Mater., 2006, 8(6), p 517–538. CrossRef D. Zenkert, A. Shipsha and M. Burman, Fatigue of Closed Cell Foams, J. Sandw. Struct. Mater., 2006, 8(6), p 517–538. CrossRef
6.
go back to reference D. Zenkert and A. Shipsha, Fatigue of Closed Cell Foams, Sandwich Structures 7: Advancing with Sandwich Structures and Materials. O.T. Thomsen, E. Bozhevolnaya, A. Lyckegaard Ed., Springer, Netherlands, 2005, p 171–181 CrossRef D. Zenkert and A. Shipsha, Fatigue of Closed Cell Foams, Sandwich Structures 7: Advancing with Sandwich Structures and Materials. O.T. Thomsen, E. Bozhevolnaya, A. Lyckegaard Ed., Springer, Netherlands, 2005, p 171–181 CrossRef
7.
go back to reference D. Zenkert and M. Burman, Failure Mode Shifts during Constant Amplitude Fatigue Loading of GFRP/Foam Core Sandwich Beams, Int. J. Fatigue, 2011, 33(2), p 217–222. CrossRef D. Zenkert and M. Burman, Failure Mode Shifts during Constant Amplitude Fatigue Loading of GFRP/Foam Core Sandwich Beams, Int. J. Fatigue, 2011, 33(2), p 217–222. CrossRef
9.
go back to reference D. Zenkert and M. Burman, Tension, Compression and Shear Fatigue of a Closed Cell Polymer Foam, Compos. Sci. Technol., 2009, 69(6), p 785–792. CrossRef D. Zenkert and M. Burman, Tension, Compression and Shear Fatigue of a Closed Cell Polymer Foam, Compos. Sci. Technol., 2009, 69(6), p 785–792. CrossRef
10.
go back to reference R.A. Shenoi, S.D. Clark and H.G. Allen, Fatigue Behaviour of Polymer Composite Sandwich Beams, J. Compos. Mater., 1995, 29(18), p 2423–2445. CrossRef R.A. Shenoi, S.D. Clark and H.G. Allen, Fatigue Behaviour of Polymer Composite Sandwich Beams, J. Compos. Mater., 1995, 29(18), p 2423–2445. CrossRef
11.
go back to reference K. Kanny and H. Mahfuz, Flexural Fatigue Characteristics of Sandwich Structures at Different Loading Frequencies, Compos. Struct., 2005, 67(4), p 403–410. CrossRef K. Kanny and H. Mahfuz, Flexural Fatigue Characteristics of Sandwich Structures at Different Loading Frequencies, Compos. Struct., 2005, 67(4), p 403–410. CrossRef
12.
go back to reference R. Gerard, J. Fajoui, P. Casari and F. Jacquemin, Novel Tensile Test for Polymeric Foams in Fatigue, J. Sandw. Struct. Mater., 2016, 18(2), p 135–150. CrossRef R. Gerard, J. Fajoui, P. Casari and F. Jacquemin, Novel Tensile Test for Polymeric Foams in Fatigue, J. Sandw. Struct. Mater., 2016, 18(2), p 135–150. CrossRef
13.
go back to reference R. Gerard, Fatigue Des Structures Sandwich Soumises Au Slamming—Développement de Nouveaux Essais (Fatigue of Sandwich Structures Subjected to Slamming—Development of New Test Methods), (2013) R. Gerard, Fatigue Des Structures Sandwich Soumises Au Slamming—Développement de Nouveaux Essais (Fatigue of Sandwich Structures Subjected to Slamming—Development of New Test Methods), (2013)
14.
go back to reference R. Gerard, F. Alila, J. Fajoui, P. Casari, and F. Jacquemin, Updated Fatigue Test Methods for Structural Foams and Sandwich Beams, (2015) R. Gerard, F. Alila, J. Fajoui, P. Casari, and F. Jacquemin, Updated Fatigue Test Methods for Structural Foams and Sandwich Beams, (2015)
16.
go back to reference M. Battley and T. Allen, Core Failure in Sandwich Structures Subjected to Water Slamming Loads, J. Sandw. Struct. Mater., 2019, 21(5), p 1751–1772. CrossRef M. Battley and T. Allen, Core Failure in Sandwich Structures Subjected to Water Slamming Loads, J. Sandw. Struct. Mater., 2019, 21(5), p 1751–1772. CrossRef
17.
go back to reference F. Morel, A. Morel and Y. Nadot, Comparison between Defects and Micro-Notches in Multiaxial Fatigue—The Size Effect and the Gradient Effect, Int. J. Fatigue, 2009, 31(2), p 263–275. CrossRef F. Morel, A. Morel and Y. Nadot, Comparison between Defects and Micro-Notches in Multiaxial Fatigue—The Size Effect and the Gradient Effect, Int. J. Fatigue, 2009, 31(2), p 263–275. CrossRef
19.
go back to reference D. Bolf, A. Zamarin, P. Krolo and M. Hadjina, Experimental Evaluation of Shear Properties of Lightweight PVC Core for Marine Application using Digital Image Correlation System, J. Mar. Sci. Eng., 2022, 10(2), p 280. CrossRef D. Bolf, A. Zamarin, P. Krolo and M. Hadjina, Experimental Evaluation of Shear Properties of Lightweight PVC Core for Marine Application using Digital Image Correlation System, J. Mar. Sci. Eng., 2022, 10(2), p 280. CrossRef
21.
go back to reference D. Makweche and M. Dundu, A Review of the Characteristics and Structural Behaviour of Sandwich Panels, Proceedings of the Institution of Civil Engineers—Structures and Buildings, (ICE Publishing, 2021), pp. 1–15 D. Makweche and M. Dundu, A Review of the Characteristics and Structural Behaviour of Sandwich Panels, Proceedings of the Institution of Civil Engineers—Structures and Buildings, (ICE Publishing, 2021), pp. 1–15
24.
go back to reference E. Saenz, Fatigue and Fracture of Foam Cores Used in Sandwich Composites, n.d., p. 202 E. Saenz, Fatigue and Fracture of Foam Cores Used in Sandwich Composites, n.d., p. 202
25.
go back to reference E.E. Saenz, L.A. Carlsson and A. Karlsson, Characterization of Fracture Toughness (Gc) of PVC and PES Foams, J. Mater. Sci., 2011, 46(9), p 3207–3215. CrossRef E.E. Saenz, L.A. Carlsson and A. Karlsson, Characterization of Fracture Toughness (Gc) of PVC and PES Foams, J. Mater. Sci., 2011, 46(9), p 3207–3215. CrossRef
27.
go back to reference F. Alila, J. Fajoui, R. Gerard, P. Casari, M. Kchaou and F. Jacquemin, Viscoelastic Behaviour Investigation and New Developed Laboratory Slamming Test on Foam Core Sandwich, J. Sandw. Struct. Mater., 2020, 22(6), p 2049–2074. CrossRef F. Alila, J. Fajoui, R. Gerard, P. Casari, M. Kchaou and F. Jacquemin, Viscoelastic Behaviour Investigation and New Developed Laboratory Slamming Test on Foam Core Sandwich, J. Sandw. Struct. Mater., 2020, 22(6), p 2049–2074. CrossRef
28.
go back to reference C.S. White, C.A. Bronkhorst and L. Anand, An Improved Isotropic—Kinematic Hardening Model for Moderate Deformation Metal Plasticity, Mech. Mater., 1990, 10(1), p 127–147. CrossRef C.S. White, C.A. Bronkhorst and L. Anand, An Improved Isotropic—Kinematic Hardening Model for Moderate Deformation Metal Plasticity, Mech. Mater., 1990, 10(1), p 127–147. CrossRef
29.
go back to reference P.D. Wu and E. Van Der Giessen, On Improved Network Models for Rubber Elasticity and Their Applications to Orientation Hardening in Glassy Polymers, J. Mech. Phys. Solids, 1993, 41(3), p 427–456. CrossRef P.D. Wu and E. Van Der Giessen, On Improved Network Models for Rubber Elasticity and Their Applications to Orientation Hardening in Glassy Polymers, J. Mech. Phys. Solids, 1993, 41(3), p 427–456. CrossRef
33.
go back to reference M. Kitagawa, T. Onoda and K. Mizutani, Stress-Strain Behaviour at Finite Strains for Various Strain Paths in Polyethylene, J. Mater. Sci., 1992, 27(1), p 13–23. CrossRef M. Kitagawa, T. Onoda and K. Mizutani, Stress-Strain Behaviour at Finite Strains for Various Strain Paths in Polyethylene, J. Mater. Sci., 1992, 27(1), p 13–23. CrossRef
34.
go back to reference N. Saintier, Fatigue multiaxiale dans un élastomère de type NR chargé: mécanismes d’endommagement et critère local d’amorçage de fissure, École Nationale Supérieure des Mines de Paris (2001), 10/document N. Saintier, Fatigue multiaxiale dans un élastomère de type NR chargé: mécanismes d’endommagement et critère local d’amorçage de fissure, École Nationale Supérieure des Mines de Paris (2001), 10/document
35.
go back to reference J. Schneider, Z. Aboura, K. Khellil, M. Benzeggagh, and D. Marsal, Caractérisation Du Comportement Hors-Plan d’un Tissé Interlock = Off-Plan Behaviour Investigation of an Interlock Fabric, JNC 16, P.O. et J. Lamon, Ed., (Toulouse, France), AMAC, (2009), p. 10, https://​hal.​archives-ouvertes.​fr/​hal-00398936. Accessed 7 Aug 2022 J. Schneider, Z. Aboura, K. Khellil, M. Benzeggagh, and D. Marsal, Caractérisation Du Comportement Hors-Plan d’un Tissé Interlock = Off-Plan Behaviour Investigation of an Interlock Fabric, JNC 16, P.O. et J. Lamon, Ed., (Toulouse, France), AMAC, (2009), p. 10, https://​hal.​archives-ouvertes.​fr/​hal-00398936. Accessed 7 Aug 2022
36.
go back to reference V. Koissin and A. Shipsha, Residual In-Plane Mechanical Properties of Transversely Crushed Structural Foams, J. Sandw. Struct. Mater., 2009, 11(2–3), p 199–211. CrossRef V. Koissin and A. Shipsha, Residual In-Plane Mechanical Properties of Transversely Crushed Structural Foams, J. Sandw. Struct. Mater., 2009, 11(2–3), p 199–211. CrossRef
37.
go back to reference D. Claire, F. Hild and S. Roux, De La Correlation d’images Numériques à l’identification de Champs de Propriétés, Bull. Soc. Fr. Phys., 2003, 139, p 29–31. D. Claire, F. Hild and S. Roux, De La Correlation d’images Numériques à l’identification de Champs de Propriétés, Bull. Soc. Fr. Phys., 2003, 139, p 29–31.
38.
go back to reference N. Samat, R. Burford, A. Whittle and M. Hoffman, The Effects of Frequency on Fatigue Threshold and Crack Propagation Rate in Modified and Unmodified Polyvinyl Chloride, Polym. Eng. Sci., 2009, 49(7), p 1299–1310. CrossRef N. Samat, R. Burford, A. Whittle and M. Hoffman, The Effects of Frequency on Fatigue Threshold and Crack Propagation Rate in Modified and Unmodified Polyvinyl Chloride, Polym. Eng. Sci., 2009, 49(7), p 1299–1310. CrossRef
40.
go back to reference V. Tita and M. Júnior, Numerical Simulation of Anisotropic Polymeric Foams, Latin Am. J. Solids Struct., 2012, 9, p 1–21. CrossRef V. Tita and M. Júnior, Numerical Simulation of Anisotropic Polymeric Foams, Latin Am. J. Solids Struct., 2012, 9, p 1–21. CrossRef
41.
go back to reference P. Poapongsakorn and C. Kanchanomai, Fatigue Crack Growth Behavior and Mechanism of Closed-Cell PVC Foam, Polym. Eng. Sci., 2013, 53(8), p 1719–1727. CrossRef P. Poapongsakorn and C. Kanchanomai, Fatigue Crack Growth Behavior and Mechanism of Closed-Cell PVC Foam, Polym. Eng. Sci., 2013, 53(8), p 1719–1727. CrossRef
42.
go back to reference R.W. Hertzberg and J.A. Manson, Fatigue of Engineering Plastics, Academic Press, 1980. R.W. Hertzberg and J.A. Manson, Fatigue of Engineering Plastics, Academic Press, 1980.
Metadata
Title
Experimental Study of the Mechanical Behavior of Polyvinyl Chloride Foam under Shear Stress
Authors
Karim Mharsi
Jamal Fajoui
Pascal Casari
Mohamed Kchaou
Publication date
05-12-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07672-w

Premium Partners