Skip to main content
Top
Published in: Measurement Techniques 3/2020

18-07-2020

Experimental Verification of a Mathematical Model of a Computerized Decreasing Discharge Pressure Effusion Gas Density Analyzer

Authors: S. Yu. Zhigulin, L. V. Iliasov

Published in: Measurement Techniques | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article presents the results of verification of a mathematical model of the developed computerized decreasing pressure effusion gas density analyzer. The operating principle of decreasing pressure effusion gas density analyzers is based on measuring the outflow time of a certain volume of the analyzed gas through a micro-orifice plate. A generalized scheme of such analyzers and their operation are described. Initial equations of the mathematical model, the assumptions and the results of the development of the mathematical model are presented. Experimental setup for testing the developed mathematical model and its operation are also described. The mathematical model was tested experimentally in numerous experiments for a number of gases using the described setup. Studies were also performed to assess the effect of temperature on the measurement results. Results of testing the mathematical model are presented. Experimental results were compared with the data calculated using the developed mathematical model. Based on the results, the error of the mathematical model of decreasing pressure effusion gas density analyzers was determined and conclusions were made about its adequacy and possible further use for design and calculations of decreasing pressure effusion gas density analyzers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. M. Mordasov and A. P. Savenkov, “Influence of the gas density on the force action of a turbulent jet,” Zh. Tekhn. Fiz., No. 8, 83–86 (2016). D. M. Mordasov and A. P. Savenkov, “Influence of the gas density on the force action of a turbulent jet,” Zh. Tekhn. Fiz., No. 8, 83–86 (2016).
2.
go back to reference N. G. Farzane, L. V. Ilyasov, and A. Yu. Azim-zade, Technological Measurements and Instruments, Al’yans, Moscow (2017). N. G. Farzane, L. V. Ilyasov, and A. Yu. Azim-zade, Technological Measurements and Instruments, Al’yans, Moscow (2017).
3.
go back to reference S. S. Kivilis, Density Meters, Energiya, Moscow (1980). S. S. Kivilis, Density Meters, Energiya, Moscow (1980).
5.
go back to reference E. A. Khatskevich and V. S. Snegov, “Errors in the results of measurements of the density of natural gas by the pycnometric method and calculations,” Gaz. Prom., No 5, 84–85 (2011). E. A. Khatskevich and V. S. Snegov, “Errors in the results of measurements of the density of natural gas by the pycnometric method and calculations,” Gaz. Prom., No 5, 84–85 (2011).
6.
go back to reference R. R. Klepcha, “A flow chromatography measurement technique for GIS with an extended range of changes in the component composition of gas,” Avtomatiz. Prom., No. 6, 34–35 (2013). R. R. Klepcha, “A flow chromatography measurement technique for GIS with an extended range of changes in the component composition of gas,” Avtomatiz. Prom., No. 6, 34–35 (2013).
7.
go back to reference A. Astakhov, “Analysis of the physicochemical properties of natural gas. Equipment and materials,” Analitika, No. 8, 40–44 (2013). A. Astakhov, “Analysis of the physicochemical properties of natural gas. Equipment and materials,” Analitika, No. 8, 40–44 (2013).
8.
go back to reference I. I. Bilinsky, K. V. Ogorodnik, and N. A. Yaremishina, “Analysis of methods and means for measuring the density of petroleum products,” Nauch. Trudy Vinnitsk. Nats. Tekhn. Univ., No. 2, 10–23 (2016). I. I. Bilinsky, K. V. Ogorodnik, and N. A. Yaremishina, “Analysis of methods and means for measuring the density of petroleum products,” Nauch. Trudy Vinnitsk. Nats. Tekhn. Univ., No. 2, 10–23 (2016).
9.
go back to reference Yu. Tarik, Waveguide Acoustic Gas and Vapor Detectors: Dissert. Cand. Techn. Sci., TvSTU, Tver (2003). Yu. Tarik, Waveguide Acoustic Gas and Vapor Detectors: Dissert. Cand. Techn. Sci., TvSTU, Tver (2003).
10.
go back to reference S. G. Sazhin, Instruments for Monitoring the Composition and Quality of Technological Environments, Lan’, St. Petersburg (2012). S. G. Sazhin, Instruments for Monitoring the Composition and Quality of Technological Environments, Lan’, St. Petersburg (2012).
11.
go back to reference V. A. Sukhov and V. N. Sukhova, Patent 2350925 RF, Izobret. Polezn. Modeli, No. 9 (2009). V. A. Sukhov and V. N. Sukhova, Patent 2350925 RF, Izobret. Polezn. Modeli, No. 9 (2009).
12.
go back to reference E. Donz’e and A. Permyui, Patent 2393456 RF, Izobret. Polezn. Modeli, No. 18 (2010). E. Donz’e and A. Permyui, Patent 2393456 RF, Izobret. Polezn. Modeli, No. 18 (2010).
23.
go back to reference D. M. Mordasov, A. P. Savenkov, and K. E. Chechetov, “The determination of discharge coefficient during gas flowing out of the round-edged orifices,” Inzh. Fiz., No. 1, 13–18 (2014). D. M. Mordasov, A. P. Savenkov, and K. E. Chechetov, “The determination of discharge coefficient during gas flowing out of the round-edged orifices,” Inzh. Fiz., No. 1, 13–18 (2014).
Metadata
Title
Experimental Verification of a Mathematical Model of a Computerized Decreasing Discharge Pressure Effusion Gas Density Analyzer
Authors
S. Yu. Zhigulin
L. V. Iliasov
Publication date
18-07-2020
Publisher
Springer US
Published in
Measurement Techniques / Issue 3/2020
Print ISSN: 0543-1972
Electronic ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-020-01776-2

Other articles of this Issue 3/2020

Measurement Techniques 3/2020 Go to the issue