Skip to main content
Top

2006 | OriginalPaper | Chapter

Experiments of Damage Detection in Strips Based on Soft Computing Methods andWave Propagation

Authors : Piotr Nazarko, Leonard Ziemiański

Published in: III European Conference on Computational Mechanics

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

All industry branches like aerospace, mechanical and civil engineering are interested in less intrusion and more accuracy failure assessment techniques. They are mostly interested in damages like cracks, delaminations, disbanding, corrosion, etc. Damage detection and assessment technique was developed in this paper. It uses variations in structural wave propagation for undamaged and damaged structure. This Structural Health Monitoring (SHM) method is useful especially in large, complex and inaccessible structures [

1

], [

2

]. Based on earlier promising results with this approach [

3

], [

4

] a set of laboratory tests were carried out on simple elements like strips. Two kind of materials were used: steel and plexy. Several failure cases were introduced by cutting or drilling the samples. Piezoceramics (PZT) elements were served as transmitters and receivers of elastic waves trough the monitored specimens. During these experiment different groups of excitation signals (continuous sine wave, one, four and six sine wave impulses) and frequency (frequency range from 2 to 50 kHz) were applied to introduce wave to the structure. The numerical models were also created using Finite Element Method (FEM). Defects in the form of a notch were simulated by the removal of selected finite elements from the model. This simulation gave possibility to extend set of damages cases and improved nets generalization properties. In both laboratory and numerical experiments advanced signal processing techniques were adopted. The measured signals were preprocessed by wavelet transform in order to remove noise. Frequency analysis was carried out by Fast Fourier transform (FFT). Replication technique was adopted to experimental data. To realize dependences between input (harmonic frequencies) and output data (height, width and localization of damage) Artificial Neural Networks (ANNs) were used. Several input combinations and nets architectures were tested. Results presented in this paper proved reliability and usefulness of proposed approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Metadata
Title
Experiments of Damage Detection in Strips Based on Soft Computing Methods andWave Propagation
Authors
Piotr Nazarko
Leonard Ziemiański
Copyright Year
2006
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/1-4020-5370-3_451

Premium Partners