Skip to main content
Top

2023 | OriginalPaper | Chapter

Explainability in Automatic Short Answer Grading

Authors : Tim Schlippe, Quintus Stierstorfer, Maurice ten Koppel, Paul Libbrecht

Published in: Artificial Intelligence in Education Technologies: New Development and Innovative Practices

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Massive open online courses and other online study opportunities are providing easier access to education for more and more people around the world. To cope with the large number of exams to be assessed in these courses, AI-driven automatic short answer grading can recommend teaching staff to assign points when evaluating free text answers, leading to faster and fairer grading. But what would be the best way to work with the AI? In this paper, we investigate and evaluate different methods for explainability in automatic short answer grading. Our survey of over 70 professors, lecturers and teachers with grading experience showed that displaying the predicted points together with matches between student answer and model answer is rated better than the other tested explainable AI (XAI) methods in the aspects trust, informative content, speed, consistency and fairness, fun, comprehensibility, applicability, use in exam preparation, and in general.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Also called sample answer or sample response in literature.
 
Literature
3.
go back to reference Koravuna, S., Surepally, U.K.: Educational gamification and artificial intelligence for promoting digital literacy. Association for Computing Machinery, New York, NY, USA (2020) Koravuna, S., Surepally, U.K.: Educational gamification and artificial intelligence for promoting digital literacy. Association for Computing Machinery, New York, NY, USA (2020)
6.
go back to reference Libbrecht, P., Declerck, T., Schlippe, T., Mandl, T., Schiffner, D.: NLP for student and teacher: Concept for an AI based information literacy tutoring system. In: The 29th ACM International Conference on Information and Knowledge Management (CIKM2020). Galway, Ireland (2020) Libbrecht, P., Declerck, T., Schlippe, T., Mandl, T., Schiffner, D.: NLP for student and teacher: Concept for an AI based information literacy tutoring system. In: The 29th ACM International Conference on Information and Knowledge Management (CIKM2020). Galway, Ireland (2020)
7.
go back to reference Schlippe, T., Sawatzki, J.: Cross-lingual automatic short answer grading. In: Proceedings of the 2nd International Conference on Artificial Intelligence in Education Technology (AIET 2021). Wuhan, China (2021) Schlippe, T., Sawatzki, J.: Cross-lingual automatic short answer grading. In: Proceedings of the 2nd International Conference on Artificial Intelligence in Education Technology (AIET 2021). Wuhan, China (2021)
11.
go back to reference Hansen, L.K., Rieger, L.: Interpretability in intelligent systems—a new concept? In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 41–49. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_3CrossRef Hansen, L.K., Rieger, L.: Interpretability in intelligent systems—a new concept? In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 41–49. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-28954-6_​3CrossRef
12.
go back to reference Bodria, F., Giannotti, F., Guidotti, R., Naretto, F., Pedreschi, D., Rinzivillo, S.: Benchmarking and survey of explanation methods for black box models (2021). arXiv:2102.13076 Bodria, F., Giannotti, F., Guidotti, R., Naretto, F., Pedreschi, D., Rinzivillo, S.: Benchmarking and survey of explanation methods for black box models (2021). arXiv:​2102.​13076
14.
go back to reference Danilevsky, M., Qian, K., Aharonov, R., Katsis, Y., Kawas, B., Sen, P.: A survey of the state of explainable AI for natural language processing (2020). arXiv:2010.00711 Danilevsky, M., Qian, K., Aharonov, R., Katsis, Y., Kawas, B., Sen, P.: A survey of the state of explainable AI for natural language processing (2020). arXiv:​2010.​00711
17.
go back to reference Sawatzki, J., Schlippe, T., Benner-Wickner, M.: Deep learning techniques for automatic short answer grading: Predicting scores for English and German answers. In: Proceedings of The 2nd International Conference on Artificial Intelligence in Education Technology (AIET 2021). Wuhan, China (2021) Sawatzki, J., Schlippe, T., Benner-Wickner, M.: Deep learning techniques for automatic short answer grading: Predicting scores for English and German answers. In: Proceedings of The 2nd International Conference on Artificial Intelligence in Education Technology (AIET 2021). Wuhan, China (2021)
20.
go back to reference Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V.: RoBERTa: A robustly optimized BERT pretraining approach. CoRR (2019). arXiv:1907.11692 Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V.: RoBERTa: A robustly optimized BERT pretraining approach. CoRR (2019). arXiv:​1907.​11692
21.
go back to reference Pires, T., Schlinger, E., Garrette, D.: How multilingual is multilingual BERT? In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy, pp. 4996–5001 (2019). https://doi.org/10.18653/v1/P19-1493 Pires, T., Schlinger, E., Garrette, D.: How multilingual is multilingual BERT? In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy, pp. 4996–5001 (2019). https://​doi.​org/​10.​18653/​v1/​P19-1493
22.
go back to reference Poulton, A., Eliens, S.: Explaining transformer-based models for automatic short answer grading. In: Proceedings of the 5th International Conference on Digital Technology in Education (ICDTE 2021). Association for Computing Machinery, New York, NY, USA, pp. 110–116 (2021). https://doi.org/10.1145/3488466.3488479 Poulton, A., Eliens, S.: Explaining transformer-based models for automatic short answer grading. In: Proceedings of the 5th International Conference on Digital Technology in Education (ICDTE 2021). Association for Computing Machinery, New York, NY, USA, pp. 110–116 (2021). https://​doi.​org/​10.​1145/​3488466.​3488479
24.
go back to reference Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD ’16). Association for Computing Machinery, New York, NY, USA, pp. 1135–1144 (2016). https://doi.org/10.1145/2939672.2939778 Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD ’16). Association for Computing Machinery, New York, NY, USA, pp. 1135–1144 (2016). https://​doi.​org/​10.​1145/​2939672.​2939778
25.
go back to reference Kim, B., Wattenberg, M., Gilmer, J., Cai, C.J., Wexler, J., Viégas, F., Sayres, R.: Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV). In: ICML 2018 Kim, B., Wattenberg, M., Gilmer, J., Cai, C.J., Wexler, J., Viégas, F., Sayres, R.: Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV). In: ICML 2018
27.
go back to reference Mohler, M., Bunescu, R., Mihalcea, R.: Learning to grade short answer questions using semantic similarity measures and dependency graph alignments. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp. 752–762 (2011) Mohler, M., Bunescu, R., Mihalcea, R.: Learning to grade short answer questions using semantic similarity measures and dependency graph alignments. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp. 752–762 (2011)
Metadata
Title
Explainability in Automatic Short Answer Grading
Authors
Tim Schlippe
Quintus Stierstorfer
Maurice ten Koppel
Paul Libbrecht
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-8040-4_5

Premium Partner