Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

Published in:
Cover of the book

2023 | OriginalPaper | Chapter

1. Explainable Artificial Intelligence (XAI) in Manufacturing

Abstract

This chapter begins by defining explainable artificial intelligence (XAI). A procedure for implementing XAI was also established. Then, through literature analysis, the application of XAI in various fields such as medicine, service, education, finance, medical treatment, manufacturing, food, and military is compared. Some representative cases in these fields are also reported. Subsequently, several applications of XAI in the field of manufacturing are reviewed, including explaining the classification process and results of factory jobs, explaining artificial neural network (ANN)-based cycle time prediction methods, comparing the effect of alloy composition using Shapely additive explanation value (SHAP) analysis, etc.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference T.C.T. Chen, Y.C. Wang, AI applications to shop floor management in lean manufacturing, in Artificial Intelligence and Lean Manufacturing (2022), pp. 75–90 T.C.T. Chen, Y.C. Wang, AI applications to shop floor management in lean manufacturing, in Artificial Intelligence and Lean Manufacturing (2022), pp. 75–90
2.
go back to reference D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, G.Z. Yang, XAI—Explainable artificial intelligence. Sci. Robot. 4(37), eaay7120 (2019) D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, G.Z. Yang, XAI—Explainable artificial intelligence. Sci. Robot. 4(37), eaay7120 (2019)
3.
go back to reference D. Gunning, D. Aha, DARPA’s explainable artificial intelligence (XAI) program. AI Mag. 40(2), 44–58 (2019) D. Gunning, D. Aha, DARPA’s explainable artificial intelligence (XAI) program. AI Mag. 40(2), 44–58 (2019)
4.
go back to reference D. Kumar, A. Wong, G.W. Taylor, Explaining the unexplained: a class-enhanced attentive response (clear) approach to understanding deep neural networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2017), pp. 36–44 D. Kumar, A. Wong, G.W. Taylor, Explaining the unexplained: a class-enhanced attentive response (clear) approach to understanding deep neural networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2017), pp. 36–44
6.
go back to reference A. Binder, G. Montavon, S. Lapuschkin, K.R. Müller, W. Samek, Layer-wise relevance propagation for neural networks with local renormalization layers, in International Conference on Artificial Neural Networks (2016), pp. 63–71 A. Binder, G. Montavon, S. Lapuschkin, K.R. Müller, W. Samek, Layer-wise relevance propagation for neural networks with local renormalization layers, in International Conference on Artificial Neural Networks (2016), pp. 63–71
8.
go back to reference M.T. Ribeiro, S. Singh, C. Guestrin, “Why should I trust you?” Explaining the predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), pp. 1135–1144 M.T. Ribeiro, S. Singh, C. Guestrin, “Why should I trust you?” Explaining the predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), pp. 1135–1144
9.
go back to reference T.-C.T. Chen, Type-II fuzzy collaborative intelligence for assessing cloud manufacturing technology applications. Robot. Comput. Integr. Manuf. 78, 102399 (2022) CrossRef T.-C.T. Chen, Type-II fuzzy collaborative intelligence for assessing cloud manufacturing technology applications. Robot. Comput. Integr. Manuf. 78, 102399 (2022) CrossRef
10.
go back to reference M.-C. Chiu, T. Chen, A ubiquitous healthcare system of 3D printing facilities for making dentures: application of type-II fuzzy logic. Digital Health 8, 20552076221092540 (2022) CrossRef M.-C. Chiu, T. Chen, A ubiquitous healthcare system of 3D printing facilities for making dentures: application of type-II fuzzy logic. Digital Health 8, 20552076221092540 (2022) CrossRef
11.
go back to reference T. Chen, Y.-C. Wang, M.-C. Chiu, A type-II fuzzy collaborative forecasting approach for productivity forecasting under an uncertainty environment. J. Ambient. Intell. Humaniz. Comput. 12, 2751–2763 (2021) CrossRef T. Chen, Y.-C. Wang, M.-C. Chiu, A type-II fuzzy collaborative forecasting approach for productivity forecasting under an uncertainty environment. J. Ambient. Intell. Humaniz. Comput. 12, 2751–2763 (2021) CrossRef
12.
go back to reference E.M. Kenny, M.T. Keane, Twin-systems to explain artificial neural networks using case-based reasoning: comparative tests of feature-weighting methods in ANN-CBR twins for XAI, in Twenty-Eighth International Joint Conferences on Artificial Intelligence (2019), pp. 2708–2715 E.M. Kenny, M.T. Keane, Twin-systems to explain artificial neural networks using case-based reasoning: comparative tests of feature-weighting methods in ANN-CBR twins for XAI, in Twenty-Eighth International Joint Conferences on Artificial Intelligence (2019), pp. 2708–2715
13.
go back to reference C. Panigutti, A. Perotti, D. Pedreschi, Doctor XAI: an ontology-based approach to black-box sequential data classification explanations, in Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (2020), pp. 629–639 C. Panigutti, A. Perotti, D. Pedreschi, Doctor XAI: an ontology-based approach to black-box sequential data classification explanations, in Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (2020), pp. 629–639
14.
go back to reference J. Souza, C.K. Leung, Explainable artificial intelligence for predictive analytics on customer turnover: a user-friendly interface for non-expert users, in Explainable AI Within the Digital Transformation and Cyber Physical Systems (2021), pp. 47–67 J. Souza, C.K. Leung, Explainable artificial intelligence for predictive analytics on customer turnover: a user-friendly interface for non-expert users, in Explainable AI Within the Digital Transformation and Cyber Physical Systems (2021), pp. 47–67
15.
go back to reference E. Choi, M.T. Bahadori, L. Song, W.F. Stewart, J. Sun, GRAM: graph-based attention model for healthcare representation learning, in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017), pp. 787–795 E. Choi, M.T. Bahadori, L. Song, W.F. Stewart, J. Sun, GRAM: graph-based attention model for healthcare representation learning, in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017), pp. 787–795
16.
go back to reference Y.-C. Lin, T. Chen, Type-II fuzzy approach with explainable artificial intelligence for nature-based leisure travel destination selection amid the COVID-19 pandemic. Digital Health 8, 20552076221106320 (2022) CrossRef Y.-C. Lin, T. Chen, Type-II fuzzy approach with explainable artificial intelligence for nature-based leisure travel destination selection amid the COVID-19 pandemic. Digital Health 8, 20552076221106320 (2022) CrossRef
17.
go back to reference U. Kamath, J. Liu, Explainable Artificial Intelligence: an Introduction to Interpretable Machine Learning (Springer, 2021) U. Kamath, J. Liu, Explainable Artificial Intelligence: an Introduction to Interpretable Machine Learning (Springer, 2021)
18.
go back to reference V.K. Venugopal, R. Takhar, S. Gupta, V. Mahajan, Clinical explainability failure (CEF) & explainability failure ratio (EFR)–Changing the way we validate classification algorithms. J. Med. Syst. 46(4), 1–5 (2022) CrossRef V.K. Venugopal, R. Takhar, S. Gupta, V. Mahajan, Clinical explainability failure (CEF) & explainability failure ratio (EFR)–Changing the way we validate classification algorithms. J. Med. Syst. 46(4), 1–5 (2022) CrossRef
19.
go back to reference J. Dujmović, W.L. Allen III., Explainable decision-making for water quality protection. Information 13(12), 551 (2022) CrossRef J. Dujmović, W.L. Allen III., Explainable decision-making for water quality protection. Information 13(12), 551 (2022) CrossRef
20.
go back to reference M. Aghamohammadi, M. Madan, J.K. Hong, I. Watson, Predicting heart attack through explainable artificial intelligence, in International Conference on Computational Science (2019), pp. 633–645. M. Aghamohammadi, M. Madan, J.K. Hong, I. Watson, Predicting heart attack through explainable artificial intelligence, in International Conference on Computational Science (2019), pp. 633–645.
21.
go back to reference T. Chen, M.-C. Chiu, Evaluating the sustainability of a smart technology application in healthcare after the COVID-19 pandemic: a hybridizing subjective and objective fuzzy group decision-making approach with XAI. Digital Health 8, 20552076221136380 (2022) CrossRef T. Chen, M.-C. Chiu, Evaluating the sustainability of a smart technology application in healthcare after the COVID-19 pandemic: a hybridizing subjective and objective fuzzy group decision-making approach with XAI. Digital Health 8, 20552076221136380 (2022) CrossRef
22.
go back to reference J.J. Liu, J.C. Liu, Permeability predictions for tight sandstone reservoir using explainable machine learning and particle swarm optimization. Geofluids 2022, 2263329 (2022) J.J. Liu, J.C. Liu, Permeability predictions for tight sandstone reservoir using explainable machine learning and particle swarm optimization. Geofluids 2022, 2263329 (2022)
23.
go back to reference T. Chen, Y.C. Wang, A two-stage explainable artificial intelligence approach for classification-based job cycle time prediction. Int. J. Adv. Manuf. Technol. 123(5), 2031–2042 (2022) CrossRef T. Chen, Y.C. Wang, A two-stage explainable artificial intelligence approach for classification-based job cycle time prediction. Int. J. Adv. Manuf. Technol. 123(5), 2031–2042 (2022) CrossRef
24.
go back to reference B.O. Kong, M.S. Kim, B.H. Kim, J.H. Lee, Prediction of creep life using an explainable artificial intelligence technique and alloy design based on the genetic algorithm in creep-strength-enhanced ferritic 9% Cr steel. Metals Mater. Int. 1–12 (2022) B.O. Kong, M.S. Kim, B.H. Kim, J.H. Lee, Prediction of creep life using an explainable artificial intelligence technique and alloy design based on the genetic algorithm in creep-strength-enhanced ferritic 9% Cr steel. Metals Mater. Int. 1–12 (2022)
25.
go back to reference Y.G. Akhlaghi, K. Aslansefat, X. Zhao, S. Sadati, A. Badiei, X. Xiao, S. Shittu, Y. Fan, X. Ma, Hourly performance forecast of a dew point cooler using explainable artificial intelligence and evolutionary optimisations by 2050. Appl. Energy 281, 116062 (2021) CrossRef Y.G. Akhlaghi, K. Aslansefat, X. Zhao, S. Sadati, A. Badiei, X. Xiao, S. Shittu, Y. Fan, X. Ma, Hourly performance forecast of a dew point cooler using explainable artificial intelligence and evolutionary optimisations by 2050. Appl. Energy 281, 116062 (2021) CrossRef
26.
go back to reference B.H. Li, B.C. Hou, W.T. Yu, X.B. Lu, C.W. Yang, Applications of artificial intelligence in intelligent manufacturing: a review. Front. Inf. Technol. Electron. Eng. 18(1), 86–96 (2017) CrossRef B.H. Li, B.C. Hou, W.T. Yu, X.B. Lu, C.W. Yang, Applications of artificial intelligence in intelligent manufacturing: a review. Front. Inf. Technol. Electron. Eng. 18(1), 86–96 (2017) CrossRef
27.
go back to reference J.F. Arinez, Q. Chang, R.X. Gao, C. Xu, J. Zhang, Artificial intelligence in advanced manufacturing: current status and future outlook. J. Manuf. Sci. Eng. 142(11), 110804 (2020) CrossRef J.F. Arinez, Q. Chang, R.X. Gao, C. Xu, J. Zhang, Artificial intelligence in advanced manufacturing: current status and future outlook. J. Manuf. Sci. Eng. 142(11), 110804 (2020) CrossRef
28.
go back to reference A. Azizi, Hybrid artificial intelligence optimization technique. Appl. Artif. Intell. Tech. Ind. 4, 27–47 (2019) A. Azizi, Hybrid artificial intelligence optimization technique. Appl. Artif. Intell. Tech. Ind. 4, 27–47 (2019)
29.
go back to reference J.R. Rehse, N. Mehdiyev, P. Fettke, Towards explainable process predictions for industry 4.0 in the dfki-smart-lego-factory. KI-Künstliche Intelligenz 33(2), 181–187 (2019) J.R. Rehse, N. Mehdiyev, P. Fettke, Towards explainable process predictions for industry 4.0 in the dfki-smart-lego-factory. KI-Künstliche Intelligenz 33(2), 181–187 (2019)
30.
go back to reference C. Chen, O. Li, A. Barnett, J. Su, C. Rudin. This looks like that: deep learning for interpretable image recognition. arXiv preprint arXiv:​1806.​10574 (2018) C. Chen, O. Li, A. Barnett, J. Su, C. Rudin. This looks like that: deep learning for interpretable image recognition. arXiv preprint arXiv:​1806.​10574 (2018)
31.
go back to reference E. Daglarli, Explainable artificial intelligence (xAI) approaches and deep meta-learning models for cyber-physical systems, in Artificial Intelligence Paradigms for Smart Cyber-Physical Systems (2021), pp. 42–67 E. Daglarli, Explainable artificial intelligence (xAI) approaches and deep meta-learning models for cyber-physical systems, in Artificial Intelligence Paradigms for Smart Cyber-Physical Systems (2021), pp. 42–67
32.
go back to reference Y.-C. Wang, H.-R. Tsai, T. Chen, A selectively fuzzified back propagation network approach for precisely estimating the cycle time range in wafer fabrication. Mathematics 9, 1430 (2021) CrossRef Y.-C. Wang, H.-R. Tsai, T. Chen, A selectively fuzzified back propagation network approach for precisely estimating the cycle time range in wafer fabrication. Mathematics 9, 1430 (2021) CrossRef
33.
go back to reference Q. Xu, V. Sharma, Ensemble sales forecasting study in semiconductor industry, in Industrial Conference on Data Mining (2017), pp. 31–44 Q. Xu, V. Sharma, Ensemble sales forecasting study in semiconductor industry, in Industrial Conference on Data Mining (2017), pp. 31–44
34.
go back to reference T. Chen, H.-C. Wu, Forecasting the unit cost of a DRAM product using a layered partial-consensus fuzzy collaborative forecasting approach. Complex Intell. Syst. 6, 497–492 (2020) CrossRef T. Chen, H.-C. Wu, Forecasting the unit cost of a DRAM product using a layered partial-consensus fuzzy collaborative forecasting approach. Complex Intell. Syst. 6, 497–492 (2020) CrossRef
35.
go back to reference T.-C. T. Chen, Y.-C. Wang, AI applications to kaizen management, in Artificial Intelligence and Lean Manufacturing, pp. 37–52 T.-C. T. Chen, Y.-C. Wang, AI applications to kaizen management, in Artificial Intelligence and Lean Manufacturing, pp. 37–52
36.
go back to reference T. Chen, Y.-C. Wang, Interval fuzzy number-based approach for modelling an uncertain fuzzy yield learning process. J. Ambient Intell. Humaniz. Comput. 11, 1213–1223 (2020) CrossRef T. Chen, Y.-C. Wang, Interval fuzzy number-based approach for modelling an uncertain fuzzy yield learning process. J. Ambient Intell. Humaniz. Comput. 11, 1213–1223 (2020) CrossRef
39.
go back to reference Z. Li, J. Cai, S. He, H. Zhao, Seq2seq dependency parsing, in Proceedings of the 27th International Conference on Computational Linguistics (2018), pp. 3203–3214 Z. Li, J. Cai, S. He, H. Zhao, Seq2seq dependency parsing, in Proceedings of the 27th International Conference on Computational Linguistics (2018), pp. 3203–3214
40.
go back to reference S. Mantri, K. Bapat, Neural network based face recognition using MATLAB. Int. J. Comput. Sci. Eng. Technol. 1(1), 6–9 (2011) S. Mantri, K. Bapat, Neural network based face recognition using MATLAB. Int. J. Comput. Sci. Eng. Technol. 1(1), 6–9 (2011)
41.
go back to reference M. Green, U. Ekelund, L. Edenbrandt, J. Björk, J.L. Forberg, M. Ohlsson, Exploring new possibilities for case-based explanation of artificial neural network ensembles. Neural Netw. 22(1), 75–81 (2009) CrossRef M. Green, U. Ekelund, L. Edenbrandt, J. Björk, J.L. Forberg, M. Ohlsson, Exploring new possibilities for case-based explanation of artificial neural network ensembles. Neural Netw. 22(1), 75–81 (2009) CrossRef
43.
go back to reference K. Yan, D. Zhang, Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sens. Actuators, B Chem. 212, 353–363 (2015) CrossRef K. Yan, D. Zhang, Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sens. Actuators, B Chem. 212, 353–363 (2015) CrossRef
44.
go back to reference Y.-C. Lin, T. Chen, An intelligent system for assisting personalized COVID-19 vaccination location selection: Taiwan as an example. Digital Health 8, 20552076221109064 (2022) CrossRef Y.-C. Lin, T. Chen, An intelligent system for assisting personalized COVID-19 vaccination location selection: Taiwan as an example. Digital Health 8, 20552076221109064 (2022) CrossRef
45.
go back to reference Y.-C. Wang, T. Chen, T.C. Hsu, A fuzzy deep neural network and simulation approach for enhancing cycle time range estimation precision in wafer fabrication. Decis. Anal. 1, 100010 (2021) Y.-C. Wang, T. Chen, T.C. Hsu, A fuzzy deep neural network and simulation approach for enhancing cycle time range estimation precision in wafer fabrication. Decis. Anal. 1, 100010 (2021)
46.
go back to reference H.-C. Wu, T. Chen, CART–BPN approach for estimating cycle time in wafer fabrication. J. Ambient. Intell. Humaniz. Comput. 6, 57–67 (2015) CrossRef H.-C. Wu, T. Chen, CART–BPN approach for estimating cycle time in wafer fabrication. J. Ambient. Intell. Humaniz. Comput. 6, 57–67 (2015) CrossRef
48.
go back to reference T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, Xgboost: extreme gradient boosting. R Package Version 0.4-2, 1(4), 1–4 (2015) T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, Xgboost: extreme gradient boosting. R Package Version 0.4-2, 1(4), 1–4 (2015)
49.
go back to reference T. Chen, A FNP approach for evaluating and enhancing the long-term competitiveness of a semiconductor fabrication factory through yield learning modeling. Int. J. Adv. Manuf. Technol. 40, 993–1003 (2009) CrossRef T. Chen, A FNP approach for evaluating and enhancing the long-term competitiveness of a semiconductor fabrication factory through yield learning modeling. Int. J. Adv. Manuf. Technol. 40, 993–1003 (2009) CrossRef
50.
go back to reference T. Chen, Establishing the optimal and efficient capacity re-allocation plans for enhancing the long-term competitiveness of a semiconductor product—a long-term trend viewpoint. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 224, 1295–1303 (2010) CrossRef T. Chen, Establishing the optimal and efficient capacity re-allocation plans for enhancing the long-term competitiveness of a semiconductor product—a long-term trend viewpoint. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 224, 1295–1303 (2010) CrossRef
51.
go back to reference T. Chen, A flexible way of modelling the long-term cost competitiveness of a semiconductor product. Robot. Comput. Integr. Manuf. 29(3), 31–40 (2013) CrossRef T. Chen, A flexible way of modelling the long-term cost competitiveness of a semiconductor product. Robot. Comput. Integr. Manuf. 29(3), 31–40 (2013) CrossRef
52.
go back to reference T. Chen, Z. Mikoláš, Y.-C. Wang, Competitiveness assessment and enhancement for virtual organisations. Int. J. Technol. Manage. 70(1), 1–3 (2016) CrossRef T. Chen, Z. Mikoláš, Y.-C. Wang, Competitiveness assessment and enhancement for virtual organisations. Int. J. Technol. Manage. 70(1), 1–3 (2016) CrossRef
53.
go back to reference Y.-C. Wang, T.-C.T. Chen, M.-C. Chiu, An explainable deep-learning approach for job cycle time prediction. Decis. Anal. 6, 100153 (2023) Y.-C. Wang, T.-C.T. Chen, M.-C. Chiu, An explainable deep-learning approach for job cycle time prediction. Decis. Anal. 6, 100153 (2023)
Metadata
Title
Explainable Artificial Intelligence (XAI) in Manufacturing
Author
Tin-Chih Toly Chen
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-27961-4_1

Premium Partners