Skip to main content
Top
Published in:

01-12-2023

Explaining population variation after the 2016 Central Italy earthquake using Call Data Records and Twitter

Authors: Natalia Selini Hadjidimitriou, Marco Lippi, Marco Mamei

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we analyse mobile phone variation before and after the 2016 Central Italy earthquake in the affected areas, using Twitter and public reconstruction works data. We create three models and show that Twitter data and the related sentiment on the earthquake, as well as the distribution of emergency houses, can contribute to explaining population variations. Our final Generalised Poisson regression model explains more than 80% of the variance of the population’s variation based on the percentage of negative polarity tweets, the number of emergency houses, the number of negative tweets on the earthquake weighted by the number of residents, number of tweets posted on the earthquake anniversary, the distance from the epicentre and several variables related to public reconstruction works (e.g. school, public housing, hydrological disruption, viability). We found that sentiment on the emergency house can be a proxy for population variation because people who live there did not displace from the crater area. The number of tweets posted during the anniversary day can, instead, indicate negative population variation because the higher the number of tweets, the more people can feel nostalgic after having relocated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Beigi G, Hu X, Maciejewski R, Liu H (2016) Sentiment analysis and ontology engineering: an environment of computational intelligence. In: Pedrycz W, Chen S-M (eds) Springer, pp 313–340 Beigi G, Hu X, Maciejewski R, Liu H (2016) Sentiment analysis and ontology engineering: an environment of computational intelligence. In: Pedrycz W, Chen S-M (eds) Springer, pp 313–340
go back to reference Bengtsson L, Lu X, Thorson A, Garfield R, von Schreeb J (2011) Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: a post-earthquake geospatial study in Haiti. PLoS Med 8(8):1–9CrossRef Bengtsson L, Lu X, Thorson A, Garfield R, von Schreeb J (2011) Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: a post-earthquake geospatial study in Haiti. PLoS Med 8(8):1–9CrossRef
go back to reference Blumenstock J (2012) Inferring patterns of internal migration from mobile phone call records: evidence from Rwanda. Inf Technol Dev 18(2):107–125CrossRef Blumenstock J (2012) Inferring patterns of internal migration from mobile phone call records: evidence from Rwanda. Inf Technol Dev 18(2):107–125CrossRef
go back to reference Cesario E, Comito C, Talia D (2017) An approach for the discovery and validation of urban mobility patterns. Pervasive Mob Comput 42:77–92CrossRef Cesario E, Comito C, Talia D (2017) An approach for the discovery and validation of urban mobility patterns. Pervasive Mob Comput 42:77–92CrossRef
go back to reference Comito C, Talia D (2004) GDIS: a service-based architecture for data integration on grids. In: On the move to meaningful internet systems 2004: OTM 2004 workshops: OTM confederated international workshops and posters, GADA, JTRES, MIOS, WORM, WOSE, PHDS, and INTEROP 2004, Agia Napa, Cyprus, October 25–29, 2004 Proceedings, pp. 88–98 Comito C, Talia D (2004) GDIS: a service-based architecture for data integration on grids. In: On the move to meaningful internet systems 2004: OTM 2004 workshops: OTM confederated international workshops and posters, GADA, JTRES, MIOS, WORM, WOSE, PHDS, and INTEROP 2004, Agia Napa, Cyprus, October 25–29, 2004 Proceedings, pp. 88–98
go back to reference Contreras D, Wilkinson S, Balan N, James P (2022) Assessing postdisaster recovery using sentiment analysis: the case of L’aquila, Italy. Earthq Spectra 38(1):81–108CrossRef Contreras D, Wilkinson S, Balan N, James P (2022) Assessing postdisaster recovery using sentiment analysis: the case of L’aquila, Italy. Earthq Spectra 38(1):81–108CrossRef
go back to reference Doan S, Vo B, Collier N (2012) An analysis of twitter messages in the 2011 Tohoku earthquake. In: Kostkova P, Szomszor M, Fowler D (eds) Electron Healthc. Springer, Berlin, pp 58–66CrossRef Doan S, Vo B, Collier N (2012) An analysis of twitter messages in the 2011 Tohoku earthquake. In: Kostkova P, Szomszor M, Fowler D (eds) Electron Healthc. Springer, Berlin, pp 58–66CrossRef
go back to reference Kejriwal M, Zhou P (2020) On detecting urgency in short crisis messages using minimal supervision and transfer learning. Soc Netw Anal Min 10(1):58CrossRef Kejriwal M, Zhou P (2020) On detecting urgency in short crisis messages using minimal supervision and transfer learning. Soc Netw Anal Min 10(1):58CrossRef
go back to reference King D (2000) You’re on your own: community vulnerability and the need for awareness and education for predicatable natural disasters. J Conting Crisis Manag 8(4):223–228CrossRef King D (2000) You’re on your own: community vulnerability and the need for awareness and education for predicatable natural disasters. J Conting Crisis Manag 8(4):223–228CrossRef
go back to reference Kontokosta C, Malik A (2018) The resilience to emergencies and disasters index: applying big data to benchmark and validate neighborhood resilience capacity. Sustain Cities Soc 36:272–285CrossRef Kontokosta C, Malik A (2018) The resilience to emergencies and disasters index: applying big data to benchmark and validate neighborhood resilience capacity. Sustain Cities Soc 36:272–285CrossRef
go back to reference Latonero M, Shklovski I (2010) ‘Respectfully yours in safety and service’-emergency management & social media evangelism. SSRN 1566423 Latonero M, Shklovski I (2010) ‘Respectfully yours in safety and service’-emergency management & social media evangelism. SSRN 1566423
go back to reference Li S, Liu Z, Li Y (2020) Temporal and spatial evolution of online public sentiment on emergencies. Inf Process Manag 57(2):102177CrossRef Li S, Liu Z, Li Y (2020) Temporal and spatial evolution of online public sentiment on emergencies. Inf Process Manag 57(2):102177CrossRef
go back to reference Lu X, Bengtsson L, Holme P (2012) Predictability of population displacement after the 2010 Haiti earthquake. Proc Natl Acad Sci 109(29):11576–11581CrossRef Lu X, Bengtsson L, Holme P (2012) Predictability of population displacement after the 2010 Haiti earthquake. Proc Natl Acad Sci 109(29):11576–11581CrossRef
go back to reference Nagy A, Stamberger J (2012) Crowd sentiment detection during disasters and crises. In: Rothkrantz L, Ristvej J, Franco Z (eds) 9th proceedings of the international conference on information systems for crisis response and management, Vancouver, Canada, April 22-25, 2012. Simon Fraser University, Vancouver, pp 1–9 Nagy A, Stamberger J (2012) Crowd sentiment detection during disasters and crises. In: Rothkrantz L, Ristvej J, Franco Z (eds) 9th proceedings of the international conference on information systems for crisis response and management, Vancouver, Canada, April 22-25, 2012. Simon Fraser University, Vancouver, pp 1–9
go back to reference Polignano M, Basile P, de Gemmis M, Semeraro G, Basile V (2019) AlBERTo: Italian BERT language understanding model for NLP challenging tasks based on tweets. In: Proceedings of the sixth Italian conference on computational linguistics (CLiC-IT 2019), vol 2481. CEUR Polignano M, Basile P, de Gemmis M, Semeraro G, Basile V (2019) AlBERTo: Italian BERT language understanding model for NLP challenging tasks based on tweets. In: Proceedings of the sixth Italian conference on computational linguistics (CLiC-IT 2019), vol 2481. CEUR
go back to reference Rudra K, Ganguly N, Goyal P, Ghosh S (2018) Extracting and summarizing situational information from the twitter social media during disasters. ACM Trans Web TWEB 12(3):1–35CrossRef Rudra K, Ganguly N, Goyal P, Ghosh S (2018) Extracting and summarizing situational information from the twitter social media during disasters. ACM Trans Web TWEB 12(3):1–35CrossRef
go back to reference Şen F, Wigand R, Agarwal N, Tokdemir S, Kasprzyk R (2016) Focal structures analysis: identifying influential sets of individuals in a social network. Soc Netw Anal Min 6:1–22CrossRef Şen F, Wigand R, Agarwal N, Tokdemir S, Kasprzyk R (2016) Focal structures analysis: identifying influential sets of individuals in a social network. Soc Netw Anal Min 6:1–22CrossRef
go back to reference Simon T, Goldberg A, Adini B (2015) Socializing in emergencies-a review of the use of social media in emergency situations. Int J Inf Manag 35(5):609–619CrossRef Simon T, Goldberg A, Adini B (2015) Socializing in emergencies-a review of the use of social media in emergency situations. Int J Inf Manag 35(5):609–619CrossRef
go back to reference Wang Y, Taylor J (2018) Coupling sentiment and human mobility in natural disasters: a Twitter-based study of the 2014 South Napa Earthquake. Nat Hazards J Int Soc Prev Mitig Nat Hazards 92(2):907–925 Wang Y, Taylor J (2018) Coupling sentiment and human mobility in natural disasters: a Twitter-based study of the 2014 South Napa Earthquake. Nat Hazards J Int Soc Prev Mitig Nat Hazards 92(2):907–925
go back to reference Wesolowski A, Stresman G, Eagle N, Stevenson J, Owaga C, Marube E, Buckee CO (2014) Quantifying travel behavior for infectious disease research: a comparison of data from surveys and mobile phones. Sci Rep 4(1):5678CrossRef Wesolowski A, Stresman G, Eagle N, Stevenson J, Owaga C, Marube E, Buckee CO (2014) Quantifying travel behavior for infectious disease research: a comparison of data from surveys and mobile phones. Sci Rep 4(1):5678CrossRef
go back to reference Wilson R, zu Erbach-Schoenberg E, Albert M, Power D, Tudge S, Gonzalez M et al (2016) Rapid and near real-time assessments of population displacement using mobile phone data following disasters: the 2015 Nepal earthquake. PLoS Curr 8 Wilson R, zu Erbach-Schoenberg E, Albert M, Power D, Tudge S, Gonzalez M et al (2016) Rapid and near real-time assessments of population displacement using mobile phone data following disasters: the 2015 Nepal earthquake. PLoS Curr 8
go back to reference Wu L, Chikaraishi M, Nguyen H, Fujiwara A (2021) Analysis of post-disaster population movement by using mobile spatial statistics. Int J Disaster Risk Reduct 54:102047CrossRef Wu L, Chikaraishi M, Nguyen H, Fujiwara A (2021) Analysis of post-disaster population movement by using mobile spatial statistics. Int J Disaster Risk Reduct 54:102047CrossRef
go back to reference Yabe T, Tsubouchi K, Fujiwara N, Sekimoto Y, Ukkusuri S (2020) Understanding post-disaster population recovery patterns. J R Soc Interface 17(163):20190532CrossRef Yabe T, Tsubouchi K, Fujiwara N, Sekimoto Y, Ukkusuri S (2020) Understanding post-disaster population recovery patterns. J R Soc Interface 17(163):20190532CrossRef
go back to reference Yabe T, Ukkusuri S, Rao P (2020) Mobile phone data reveals the importance of pre-disaster inter-city social ties for recovery after Hurricane Maria. Appl Netw Sci 5(1):1–18CrossRef Yabe T, Ukkusuri S, Rao P (2020) Mobile phone data reveals the importance of pre-disaster inter-city social ties for recovery after Hurricane Maria. Appl Netw Sci 5(1):1–18CrossRef
Metadata
Title
Explaining population variation after the 2016 Central Italy earthquake using Call Data Records and Twitter
Authors
Natalia Selini Hadjidimitriou
Marco Lippi
Marco Mamei
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01139-z

Premium Partner