Skip to main content
Top

2024 | OriginalPaper | Chapter

Explanation for Oscillating Backbone Curves Based on Fractional Spectral Submanifolds

Authors : Leonardo Bettini, Bálint Kaszás, Mattia Cenedese, Tobias Brack, Jürg Dual, George Haller

Published in: Nonlinear Structures & Systems, Vol. 1

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The instantaneous relationship between frequency and amplitude (backbone curve) of a decaying trajectory represents an important feature of a system, as it provides information about the forced response, if forcing and damping are small. The backbone curve of a system can be directly approximated by the reduced dynamics on spectral submanifolds (SSMs) constructed either from governing equations or from data, without the necessity for extensive numerical computations (numerical continuation or time integration). In this chapter, we study oscillating backbone curves observed in experiments and numerical simulations. Oscillations become more apparent, as the initial condition of decaying trajectory moves farther away from the primary SSM, which is indeed incapable of reproducing this phenomenon. Conversely, a new class of manifolds, fractional (or secondary) SSMs, offer a clear explanation for this observation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)MathSciNetCrossRef Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)MathSciNetCrossRef
2.
go back to reference Rowley, C.W., Dawson, S.T.: Model reduction for flow analysis and control. Ann. Rev. Fluid Mech. 49, 387–417 (2017)MathSciNetCrossRef Rowley, C.W., Dawson, S.T.: Model reduction for flow analysis and control. Ann. Rev. Fluid Mech. 49, 387–417 (2017)MathSciNetCrossRef
3.
go back to reference Ghadami, A., Epureanu, B.I.: Data-driven prediction in dynamical systems: recent developments. Philos. Trans. R. Soc. A 380(2229), 20210213 (2022)CrossRef Ghadami, A., Epureanu, B.I.: Data-driven prediction in dynamical systems: recent developments. Philos. Trans. R. Soc. A 380(2229), 20210213 (2022)CrossRef
4.
go back to reference Brunton, S.L., Noack, B.R., Koumoutsakos, P.: Machine learning for fluid mechanics. Ann. Rev. Fluid Mech. 52, 477–508 (2020)MathSciNetCrossRef Brunton, S.L., Noack, B.R., Koumoutsakos, P.: Machine learning for fluid mechanics. Ann. Rev. Fluid Mech. 52, 477–508 (2020)MathSciNetCrossRef
5.
go back to reference Taira, K., Brunton, S.L., Dawson, S.T., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V., Ukeiley, L.S.: Modal analysis of fluid flows: an overview. AIAA J. 55(12), 4013–4041 (2017)CrossRef Taira, K., Brunton, S.L., Dawson, S.T., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V., Ukeiley, L.S.: Modal analysis of fluid flows: an overview. AIAA J. 55(12), 4013–4041 (2017)CrossRef
6.
go back to reference Touzé, C., Vizzaccaro, A., Thomas, O.: Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques. Nonlinear Dyn. 105(2), 1141–1190 (2021)CrossRef Touzé, C., Vizzaccaro, A., Thomas, O.: Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques. Nonlinear Dyn. 105(2), 1141–1190 (2021)CrossRef
7.
go back to reference Cabré, X., Fontich, E., De La Llave, R.: The parameterization method for invariant manifolds iii: overview and applications. J. Differ. Eq. 218(2), 444–515 (2005)MathSciNetCrossRef Cabré, X., Fontich, E., De La Llave, R.: The parameterization method for invariant manifolds iii: overview and applications. J. Differ. Eq. 218(2), 444–515 (2005)MathSciNetCrossRef
8.
go back to reference Haller, G., Ponsioen, S.: Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction. Nonlinear Dyn. 86, 1493–1534 (2016)MathSciNetCrossRef Haller, G., Ponsioen, S.: Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction. Nonlinear Dyn. 86, 1493–1534 (2016)MathSciNetCrossRef
9.
go back to reference Cenedese, M., Axås, J., Bäuerlein, B., Avila, K., Haller, G.: Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds. Nat. Commun. 13(1), 872 (2022)CrossRef Cenedese, M., Axås, J., Bäuerlein, B., Avila, K., Haller, G.: Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds. Nat. Commun. 13(1), 872 (2022)CrossRef
10.
go back to reference Cenedese, M., Axås, J., Yang, H., Eriten, M., Haller, G.: Data-driven nonlinear model reduction to spectral submanifolds in mechanical systems. Philos. Trans. R. Soc. A 380(2229), 20210194 (2022)MathSciNetCrossRef Cenedese, M., Axås, J., Yang, H., Eriten, M., Haller, G.: Data-driven nonlinear model reduction to spectral submanifolds in mechanical systems. Philos. Trans. R. Soc. A 380(2229), 20210194 (2022)MathSciNetCrossRef
11.
go back to reference Cenedese, M., Jain, S., Marconi, J., Haller, G.: Data-assisted non-intrusive model reduction for forced nonlinear finite elements models. arXiv:2311.17865 (2023) Cenedese, M., Jain, S., Marconi, J., Haller, G.: Data-assisted non-intrusive model reduction for forced nonlinear finite elements models. arXiv:2311.17865 (2023)
12.
go back to reference Haller, G., Kaszás, B., Liu, A., Axås, J.: Nonlinear model reduction to fractional and mixed-mode spectral submanifolds. Chaos: Interdiscip. J. Nonlinear Sci. 33(6), 063138 (2023)MathSciNetCrossRef Haller, G., Kaszás, B., Liu, A., Axås, J.: Nonlinear model reduction to fractional and mixed-mode spectral submanifolds. Chaos: Interdiscip. J. Nonlinear Sci. 33(6), 063138 (2023)MathSciNetCrossRef
13.
go back to reference Brack, T., Zybach, B., Balabdaoui, F., Kaufmann, S., Palmegiano, F., Tomasina, J.C., Blunier, S., Scheiwiller, D., Fankhauser, J., Dual, J.: Dynamic measurement of gravitational coupling between resonating beams in the hertz regime. Nat. Phys. 18(8), 952–957 (2022)CrossRef Brack, T., Zybach, B., Balabdaoui, F., Kaufmann, S., Palmegiano, F., Tomasina, J.C., Blunier, S., Scheiwiller, D., Fankhauser, J., Dual, J.: Dynamic measurement of gravitational coupling between resonating beams in the hertz regime. Nat. Phys. 18(8), 952–957 (2022)CrossRef
14.
go back to reference Jain, S., Haller, G.: How to compute invariant manifolds and their reduced dynamics in high-dimensional finite element models. Nonlinear Dyn. 107, 1–34 (2022)CrossRef Jain, S., Haller, G.: How to compute invariant manifolds and their reduced dynamics in high-dimensional finite element models. Nonlinear Dyn. 107, 1–34 (2022)CrossRef
Metadata
Title
Explanation for Oscillating Backbone Curves Based on Fractional Spectral Submanifolds
Authors
Leonardo Bettini
Bálint Kaszás
Mattia Cenedese
Tobias Brack
Jürg Dual
George Haller
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-69409-7_12