Skip to main content
Top
Published in: Journal of Nanoparticle Research 12/2021

01-12-2021 | Research paper

Exploding wire preparation of core–shell aluminum–silicon nanoparticles and characterization as energetic material

Authors: Bing Pan, Shi Yan, Qingqing Yuan, Shuang Li, Xueyong Guo, Jianxin Nie, Qingjie Jiao

Published in: Journal of Nanoparticle Research | Issue 12/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Novel aluminum–silicon (Al–Si) nanoparticles (11 ~ 12 wt.% silicon) with core–shell structure were designed and prepared by electric wire explosion in argon atmosphere. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure and composition of Al–Si powders. Oxygen bomb calorimeter was used to obtain the combustion heat released, whereas thermo-gravimetric analysis and differential scanning calorimetry (TG-DSC) were used to study the thermal oxidation process. Results showed that the particle size of Al–Si powders with d50 of 311.8 nm was mainly in the nanometer range, although some large particles of several micrometers were observed. The nanoparticles had a typical “core–shell” structure. The shell consisted of silicon chips and aluminum oxides, whereas core is mainly composed of silicon frameworks filled with aluminum. TG-DSC results showed that the thermal oxidation reaction of Al–Si nanoparticles in the air proceeded in three stages. The first stage involves the slow oxidation reaction, whereas in the second step there is a violent oxidation reaction of Al, which started at about 535.5 ℃. The third step involves the mild oxidation of Al and Si. The weight gain was 72%. The oxygen bomb calorimeter tests showed that the heat release of Al–Si powders was higher than that of pure nano-Al powders. Therefore, the Al–Si nanoparticles prepared in the present work can be considered as a promising candidate in composite energetic materials such as explosives and propellants.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abdelkader EM, Jelliss PA, Buckner SW (2016) Main group nanoparticle synthesis using electrical explosion of wires. Nano-Struct Nano-Objects 7:23–31CrossRef Abdelkader EM, Jelliss PA, Buckner SW (2016) Main group nanoparticle synthesis using electrical explosion of wires. Nano-Struct Nano-Objects 7:23–31CrossRef
go back to reference Abraham A, Nie H, Schoenitz M, Vorozhtsov A et al (2016) Bimetal Al-Ni nano-powders for energetic formulations. Combust Flame 173(179):186 Abraham A, Nie H, Schoenitz M, Vorozhtsov A et al (2016) Bimetal Al-Ni nano-powders for energetic formulations. Combust Flame 173(179):186
go back to reference Aly Y, Dreizin EL (2015) Ignition and combustion of Al–Mg alloy powders prepared by different techniques. Combust Flame 162:1440–1447CrossRef Aly Y, Dreizin EL (2015) Ignition and combustion of Al–Mg alloy powders prepared by different techniques. Combust Flame 162:1440–1447CrossRef
go back to reference Anil Rugunanan R, Brown ME (1993) Combustion of binary and ternary silicon/oxidant pyrotechnic systems, Part I: binary systems with Fe2O3 and SnO2 as oxidants. Combust Sci Technol 95:61–83CrossRef Anil Rugunanan R, Brown ME (1993) Combustion of binary and ternary silicon/oxidant pyrotechnic systems, Part I: binary systems with Fe2O3 and SnO2 as oxidants. Combust Sci Technol 95:61–83CrossRef
go back to reference Bac LH, Kim JS, Kim JC (2010) Synthesis of Fe–Ni invar alloy nanopowders by the electrical explosion of wire in the liquid. Res Chem Intermed 36(6–7):795–800CrossRef Bac LH, Kim JS, Kim JC (2010) Synthesis of Fe–Ni invar alloy nanopowders by the electrical explosion of wire in the liquid. Res Chem Intermed 36(6–7):795–800CrossRef
go back to reference Baoyun Z, Chuan H, Shi Y et al (2013) Enhanced reactivity of boron, through adding nano-aluminum and wet ball milling. Appl Surf Sci 286(12):91–98 Baoyun Z, Chuan H, Shi Y et al (2013) Enhanced reactivity of boron, through adding nano-aluminum and wet ball milling. Appl Surf Sci 286(12):91–98
go back to reference Brandstadt K, Frost DL, Kozinski JA (2009) Preignition characteristics of nano- and micrometer-scale aluminum particles in Al–CO2 oxidation systems. Proc Combust Inst 32(2):1913–1919CrossRef Brandstadt K, Frost DL, Kozinski JA (2009) Preignition characteristics of nano- and micrometer-scale aluminum particles in Al–CO2 oxidation systems. Proc Combust Inst 32(2):1913–1919CrossRef
go back to reference Cho C, Ha YC, Kang C et al (2011) Electrical explosion of silicon rod in distilled water. Jpn J Appl Phys 50(10Issue1):106201–106204CrossRef Cho C, Ha YC, Kang C et al (2011) Electrical explosion of silicon rod in distilled water. Jpn J Appl Phys 50(10Issue1):106201–106204CrossRef
go back to reference Chung S W (2011) The synthesis and characterization of aluminum nanoparticles passivated with epoxides and graphite and the modeling of size-dependent enthalpy of reaction.[D]. Saint Louis University. Chung S W (2011) The synthesis and characterization of aluminum nanoparticles passivated with epoxides and graphite and the modeling of size-dependent enthalpy of reaction.[D]. Saint Louis University.
go back to reference Deluca LT , Galfetti L , Maggi F et al (2014) Characterization and Combustion of Aluminum Nanopowders in Energetic Systems[M] Deluca LT , Galfetti L , Maggi F et al (2014) Characterization and Combustion of Aluminum Nanopowders in Energetic Systems[M]
go back to reference Gadiyak GV (1997) New theory of the thermal oxidation of silicon. Russ Microlectron 27(4):69–73 Gadiyak GV (1997) New theory of the thermal oxidation of silicon. Russ Microlectron 27(4):69–73
go back to reference Huang S, Parimi VS, Deng S et al (2017) Facile thermal and optical ignition of silicon nanoparticles and micron particles. Nano Lett 17(10):5925–5930CrossRef Huang S, Parimi VS, Deng S et al (2017) Facile thermal and optical ignition of silicon nanoparticles and micron particles. Nano Lett 17(10):5925–5930CrossRef
go back to reference Ishihara S, Koishi T, Orikawa T et al (2012) (2012) Synthesis of intermetallic NiAl compound nanoparticles by pulsed wire discharge of twisted Ni and Al wires[J]. Intermetallics 23(8):134–142CrossRef Ishihara S, Koishi T, Orikawa T et al (2012) (2012) Synthesis of intermetallic NiAl compound nanoparticles by pulsed wire discharge of twisted Ni and Al wires[J]. Intermetallics 23(8):134–142CrossRef
go back to reference Ishihara S, Suematsu H, Nakayama T et al (2012b) Nano-sized particles formed by pulsed discharge of powders. Mater Lett 67(1):289–292CrossRef Ishihara S, Suematsu H, Nakayama T et al (2012b) Nano-sized particles formed by pulsed discharge of powders. Mater Lett 67(1):289–292CrossRef
go back to reference Iskoldsky AM, Volkov NB, Zubareva OV (1996) The dynamics of large-scale spatial structures in current-carrying fluids and the electric wire explosion of conductors. Physica D 91(1–2):182–204CrossRef Iskoldsky AM, Volkov NB, Zubareva OV (1996) The dynamics of large-scale spatial structures in current-carrying fluids and the electric wire explosion of conductors. Physica D 91(1–2):182–204CrossRef
go back to reference Jeurgens L, Sloof W, Tichelaar F et al (2000) Thermodynamic stability of amorphous oxide films on metals: application to aluminum oxide films on aluminum substrates. Phys Rev B 62(7):4707–4719CrossRef Jeurgens L, Sloof W, Tichelaar F et al (2000) Thermodynamic stability of amorphous oxide films on metals: application to aluminum oxide films on aluminum substrates. Phys Rev B 62(7):4707–4719CrossRef
go back to reference Jiang Z, Li C, Hao S et al (2014) An easy way for preparing high performance porous silicon powder by acid etching Al–Si alloy powder for lithium ion battery. Electrochim Acta 115(complete):393–398CrossRef Jiang Z, Li C, Hao S et al (2014) An easy way for preparing high performance porous silicon powder by acid etching Al–Si alloy powder for lithium ion battery. Electrochim Acta 115(complete):393–398CrossRef
go back to reference Kotov YA (2003) Electric wire explosion of wires as a method for preparation of nanopowders. J Nanopart Res 5(5):539–550CrossRef Kotov YA (2003) Electric wire explosion of wires as a method for preparation of nanopowders. J Nanopart Res 5(5):539–550CrossRef
go back to reference Kumar LS, Chakravarthi SR, Sarathi R et al (2017) Thermodynamic modeling and characterizations of Al nanoparticles produced by electrical wire explosion process. J Mater Res 32(4):897–909CrossRef Kumar LS, Chakravarthi SR, Sarathi R et al (2017) Thermodynamic modeling and characterizations of Al nanoparticles produced by electrical wire explosion process. J Mater Res 32(4):897–909CrossRef
go back to reference Kwok QSM, Fouchard RC, Turcotte AM et al (2002) Characterization of aluminum nanopowders compositions. Propellants Explos Pyrotech 27(4):229–240CrossRef Kwok QSM, Fouchard RC, Turcotte AM et al (2002) Characterization of aluminum nanopowders compositions. Propellants Explos Pyrotech 27(4):229–240CrossRef
go back to reference Lerner MI, Glazkova EA, Lozhkomoev AS et al (2016) Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen. Powder Technol 295:307–314CrossRef Lerner MI, Glazkova EA, Lozhkomoev AS et al (2016) Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen. Powder Technol 295:307–314CrossRef
go back to reference Levin I, Brandon D (1998) Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences[J]. Journal of the American Ceramic Society, 81(8):1995–2012. Levin I, Brandon D (1998) Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences[J]. Journal of the American Ceramic Society,  81(8):1995–2012.
go back to reference Liu Y, Ren H, Jiao Q (2017) The influence of different oxidation processes on micron-sized aluminum particles[C]// 2016 International Forum on Mechanical, Control and Automation (IFMCA 2016) Liu Y, Ren H, Jiao Q (2017) The influence of different oxidation processes on micron-sized aluminum particles[C]// 2016 International Forum on Mechanical, Control and Automation (IFMCA 2016)
go back to reference Lsk A, Src A, Rv B et al (2020) Synthesis of multiphase binary eutectic Al–Mg alloy-nanoparticles by electrical wire explosion technique for high-energy applications, its characterisation and size-dependent thermodynamic and kinetic study. J Alloys Compd 838:155630CrossRef Lsk A, Src A, Rv B et al (2020) Synthesis of multiphase binary eutectic Al–Mg alloy-nanoparticles by electrical wire explosion technique for high-energy applications, its characterisation and size-dependent thermodynamic and kinetic study. J Alloys Compd 838:155630CrossRef
go back to reference Luo P, Nieh TG, Schwartz AJ et al (1995) Surface characterization of nanostructured metal and ceramic particles. Materials Sci Eng A 204(1–2):59–64CrossRef Luo P, Nieh TG, Schwartz AJ et al (1995) Surface characterization of nanostructured metal and ceramic particles. Materials Sci Eng A 204(1–2):59–64CrossRef
go back to reference Mohammed Iqbal C, Santhosh Kumar L et al (2019) Synthesis and characterization of hypoeutectic Al–Mg nanopowders produced by electrical explosion method. Materials Research Express 11(6):1150g5 (11 pp) Mohammed Iqbal C, Santhosh Kumar L et al (2019) Synthesis and characterization of hypoeutectic Al–Mg nanopowders produced by electrical explosion method. Materials Research Express 11(6):1150g5 (11 pp)
go back to reference Noor F, Vorozhtsov A, Lerner M et al (2015) Thermal-chemical characteristics of Al–Cu alloy nanoparticles. J Phys Chem C 119:14001–14009CrossRef Noor F, Vorozhtsov A, Lerner M et al (2015) Thermal-chemical characteristics of Al–Cu alloy nanoparticles. J Phys Chem C 119:14001–14009CrossRef
go back to reference Slocik JM, Drummy LF et al (2015) Bioinspired high-performance energetic materials using heme-containing crystals. Small 11(29):3539–3544CrossRef Slocik JM, Drummy LF et al (2015) Bioinspired high-performance energetic materials using heme-containing crystals. Small 11(29):3539–3544CrossRef
go back to reference Terry BC, Gunduz IE, Pfeil MA et al (2016) A mechanism for shattering microexplosions and dispersive boiling phenomena in aluminum-lithium alloy based solid propellant. Proc Combust Inst 36:2309–2316CrossRef Terry BC, Gunduz IE, Pfeil MA et al (2016) A mechanism for shattering microexplosions and dispersive boiling phenomena in aluminum-lithium alloy based solid propellant. Proc Combust Inst 36:2309–2316CrossRef
go back to reference Tucker TJ, Toth RP (1975) A computer code for the prediction of the behavior of electrical circuits containing exploding wire elements[M]. Sandia Laboratories, SAND-75-0041, 4-26. Tucker TJ, Toth RP (1975) A computer code for the prediction of the behavior of electrical circuits containing exploding wire elements[M]. Sandia Laboratories, SAND-75-0041, 4-26.
go back to reference Umakoshi M, Yoshitomi T, Kato A (1995) Preparation of alumina and alumina-silica powders by wire explosion resulting from electric discharge. J Mater Sci 30(5):1240–1244CrossRef Umakoshi M, Yoshitomi T, Kato A (1995) Preparation of alumina and alumina-silica powders by wire explosion resulting from electric discharge. J Mater Sci 30(5):1240–1244CrossRef
go back to reference Zhao W, Wang X, Wang H, Tao Wu, Kline DJ, Rehwoldt M, Ren H, Zachariah MR (2020a) Titanium enhanced ignition and combustion of Al/I2O5 mesoparticle composites. Combust Flame 212:245–251CrossRef Zhao W, Wang X, Wang H, Tao Wu, Kline DJ, Rehwoldt M, Ren H, Zachariah MR (2020a) Titanium enhanced ignition and combustion of Al/I2O5 mesoparticle composites. Combust Flame 212:245–251CrossRef
go back to reference Zhao W, Ren H, Ou Y, Jiao Q (2020) Nanocomposites with Al and Ti binary fuels and potassium oxysalts for energetic applications. Mater Lett 262:127189CrossRef Zhao W, Ren H, Ou Y, Jiao Q (2020) Nanocomposites with Al and Ti binary fuels and potassium oxysalts for energetic applications. Mater Lett 262:127189CrossRef
Metadata
Title
Exploding wire preparation of core–shell aluminum–silicon nanoparticles and characterization as energetic material
Authors
Bing Pan
Shi Yan
Qingqing Yuan
Shuang Li
Xueyong Guo
Jianxin Nie
Qingjie Jiao
Publication date
01-12-2021
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 12/2021
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-021-05255-9

Other articles of this Issue 12/2021

Journal of Nanoparticle Research 12/2021 Go to the issue

Premium Partners