Skip to main content
Top
Published in:

2024 | OriginalPaper | Chapter

Exploiting Medical-Expert Knowledge Via a Novel Memetic Algorithm for the Inference of Gene Regulatory Networks

Authors : Adrián Segura-Ortiz, José García-Nieto, José F. Aldana-Montes

Published in: Computational Science – ICCS 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study introduces an innovative memetic algorithm for optimizing the consensus of well-adapted techniques for the inference of gene regulation networks. Building on the methodology of a previous proposal (GENECI), this research adds a local search phase that incorporates prior knowledge about gene interactions, thereby enhancing the optimization process under the influence of domain expert. The algorithm focuses on the evaluation of candidate solutions through a detailed evolutionary process, where known gene interactions guide the evolution of such solutions (individuals). This approach was subjected to rigorous testing using benchmarks from editions 3 and 4 of the DREAM challenges and the yeast network of IRMA, demonstrating a significant improvement in accuracy compared to previous related approaches. The results highlight the effectiveness of the algorithm, even when only 5% of the known interactions are used as a reference. This advancement represents a significant step in the inference of gene regulation networks, providing a more precise and adaptable tool for genomic research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Altay, G., Emmert-Streib, F.: Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol. 4(1), 1–13 (2010)CrossRef Altay, G., Emmert-Streib, F.: Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol. 4(1), 1–13 (2010)CrossRef
2.
go back to reference Aluru, M., Shrivastava, H., Chockalingam, S.P., Shivakumar, S., Aluru, S.: Engrain: a supervised ensemble learning method for recovery of large-scale gene regulatory networks. Bioinformatics 38(5), 1312–1319 (2022)CrossRef Aluru, M., Shrivastava, H., Chockalingam, S.P., Shivakumar, S., Aluru, S.: Engrain: a supervised ensemble learning method for recovery of large-scale gene regulatory networks. Bioinformatics 38(5), 1312–1319 (2022)CrossRef
3.
go back to reference Baliarsingh, S.K., Muhammad, K., Bakshi, S.: Sara: a memetic algorithm for high-dimensional biomedical data. Appl. Soft Comput. 101, 107009 (2021)CrossRef Baliarsingh, S.K., Muhammad, K., Bakshi, S.: Sara: a memetic algorithm for high-dimensional biomedical data. Appl. Soft Comput. 101, 107009 (2021)CrossRef
4.
go back to reference Cantone, I., Marucci, L., et al.: A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137(1), 172–181 (2009)CrossRef Cantone, I., Marucci, L., et al.: A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137(1), 172–181 (2009)CrossRef
5.
go back to reference Correa, L., Borguesan, B., Farfan, C., Inostroza-Ponta, M., Dorn, M.: A memetic algorithm for 3D protein structure prediction problem. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(3), 690–704 (2016)CrossRef Correa, L., Borguesan, B., Farfan, C., Inostroza-Ponta, M., Dorn, M.: A memetic algorithm for 3D protein structure prediction problem. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(3), 690–704 (2016)CrossRef
6.
go back to reference Escorcia-Rodríguez, J.M., Gaytan-Nuñez, E., et al.: Improving gene regulatory network inference and assessment: the importance of using network structure. Front. Genet. 14, 1143382 (2023)CrossRef Escorcia-Rodríguez, J.M., Gaytan-Nuñez, E., et al.: Improving gene regulatory network inference and assessment: the importance of using network structure. Front. Genet. 14, 1143382 (2023)CrossRef
7.
go back to reference Faith, J.J., Hayete, B., Thaden, J.T., et al.: Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5(1), e8 (2007)CrossRef Faith, J.J., Hayete, B., Thaden, J.T., et al.: Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5(1), e8 (2007)CrossRef
8.
go back to reference Finkle, J.D., Wu, J., Bagheri, N.: Windowed granger causal inference strategy improves discovery of gene regulatory networks. Proc. Nat. Acad. Sci. 115, 2252–2257 (2018)CrossRef Finkle, J.D., Wu, J., Bagheri, N.: Windowed granger causal inference strategy improves discovery of gene regulatory networks. Proc. Nat. Acad. Sci. 115, 2252–2257 (2018)CrossRef
9.
go back to reference Fujii, C., Kuwahara, H., Yu, G., et al.: Learning gene regulatory networks from gene expression data using weighted consensus. Neurocomputing 220, 23–33 (2017)CrossRef Fujii, C., Kuwahara, H., Yu, G., et al.: Learning gene regulatory networks from gene expression data using weighted consensus. Neurocomputing 220, 23–33 (2017)CrossRef
10.
go back to reference Gan, Y., Hu, X., Zou, G., et al.: Inferring gene regulatory networks from single-cell transcriptomic data using bidirectional RNN. Front. Oncol. 12 (2022) Gan, Y., Hu, X., Zou, G., et al.: Inferring gene regulatory networks from single-cell transcriptomic data using bidirectional RNN. Front. Oncol. 12 (2022)
11.
go back to reference García-Nieto, J., Nebro, A.J., Aldana-Montes, J.F.: Inference of gene regulatory networks with multi-objective cellular genetic algorithm. Comput. Biol. Chem. 80, 409–418 (2019)CrossRef García-Nieto, J., Nebro, A.J., Aldana-Montes, J.F.: Inference of gene regulatory networks with multi-objective cellular genetic algorithm. Comput. Biol. Chem. 80, 409–418 (2019)CrossRef
12.
go back to reference Ghazikhani, A., Akbarzadeh, T., Monsefi, R.: Genetic regulatory network inference using recurrent neural networks trained by a multi agent system. In: 2011 1st International eConference on Computer and Knowledge Engineering (ICCKE) (2011) Ghazikhani, A., Akbarzadeh, T., Monsefi, R.: Genetic regulatory network inference using recurrent neural networks trained by a multi agent system. In: 2011 1st International eConference on Computer and Knowledge Engineering (ICCKE) (2011)
13.
go back to reference Gong, M., Peng, Z., Ma, L., Huang, J.: Global biological network alignment by using efficient memetic algorithm. IEEE/ACM Trans. Comput. Biol. Bioinf. 13(6), 1117–1129 (2015)CrossRef Gong, M., Peng, Z., Ma, L., Huang, J.: Global biological network alignment by using efficient memetic algorithm. IEEE/ACM Trans. Comput. Biol. Bioinf. 13(6), 1117–1129 (2015)CrossRef
14.
go back to reference Han, P., Gopalakrishnan, C., Yu, H., Wang, E.: Gene regulatory network rewiring in the immune cells associated with cancer. Genes 8(11), 308 (2017)CrossRef Han, P., Gopalakrishnan, C., Yu, H., Wang, E.: Gene regulatory network rewiring in the immune cells associated with cancer. Genes 8(11), 308 (2017)CrossRef
15.
go back to reference Hillerton, T., et al.: Fast and accurate gene regulatory network inference by normalized least squares regression. Bioinformatics 38(8), 2263–2268 (2022)CrossRef Hillerton, T., et al.: Fast and accurate gene regulatory network inference by normalized least squares regression. Bioinformatics 38(8), 2263–2268 (2022)CrossRef
16.
go back to reference Hurtado, S., Garcia-Nieto, J., Navas-Delgado, I., Nebro, A.J., Aldana-Montes, J.F.: Reconstruction of gene regulatory networks with multi-objective particle swarm optimisers. Appl. Intell. 51, 1972–1991 (2021)CrossRef Hurtado, S., Garcia-Nieto, J., Navas-Delgado, I., Nebro, A.J., Aldana-Montes, J.F.: Reconstruction of gene regulatory networks with multi-objective particle swarm optimisers. Appl. Intell. 51, 1972–1991 (2021)CrossRef
17.
go back to reference Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5(9), e12776 (2010)CrossRef Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5(9), e12776 (2010)CrossRef
19.
go back to reference Khojasteh, H., Khanteymoori, A., Olyaee, M.H.: EnGRNT: inference of gene regulatory networks using ensemble methods and topological feature extraction. Inform. Med. Unlocked 27, 100773 (2021)CrossRef Khojasteh, H., Khanteymoori, A., Olyaee, M.H.: EnGRNT: inference of gene regulatory networks using ensemble methods and topological feature extraction. Inform. Med. Unlocked 27, 100773 (2021)CrossRef
20.
go back to reference Kizaki, N., et al.: The inference method of the gene regulatory network with a majority rule. Nonlinear Theory Appl. IEICE 6, 226–236 (2015)CrossRef Kizaki, N., et al.: The inference method of the gene regulatory network with a majority rule. Nonlinear Theory Appl. IEICE 6, 226–236 (2015)CrossRef
21.
go back to reference de Lima Corrêa, L., Dorn, M.: A multi-population memetic algorithm for the 3-D protein structure prediction problem. Swarm Evol. Comput. 55, 100677 (2020)CrossRef de Lima Corrêa, L., Dorn, M.: A multi-population memetic algorithm for the 3-D protein structure prediction problem. Swarm Evol. Comput. 55, 100677 (2020)CrossRef
22.
go back to reference Liu, L., et al.: Reconstructing gene regulatory networks via memetic algorithm and lasso based on recurrent neural networks. Soft. Comput. 24, 4205–4221 (2020)CrossRef Liu, L., et al.: Reconstructing gene regulatory networks via memetic algorithm and lasso based on recurrent neural networks. Soft. Comput. 24, 4205–4221 (2020)CrossRef
23.
go back to reference Liu, W., et al.: Inferring gene regulatory networks using the improved Markov blanket discovery algorithm. Interdisc. Sci. Comput. Life Sci. 1–14 (2022) Liu, W., et al.: Inferring gene regulatory networks using the improved Markov blanket discovery algorithm. Interdisc. Sci. Comput. Life Sci. 1–14 (2022)
24.
go back to reference Marbach, D., Costello, J.C., Küffner, R., et al.: Wisdom of crowds for robust gene network inference. Nat. Methods 9(8), 796–804 (2012)CrossRef Marbach, D., Costello, J.C., Küffner, R., et al.: Wisdom of crowds for robust gene network inference. Nat. Methods 9(8), 796–804 (2012)CrossRef
26.
go back to reference Meyer, P., Saez-Rodriguez, J.: Advances in systems biology modeling: 10 years of crowdsourcing dream challenges. Cell Syst. 12(6), 636–653 (2021)CrossRef Meyer, P., Saez-Rodriguez, J.: Advances in systems biology modeling: 10 years of crowdsourcing dream challenges. Cell Syst. 12(6), 636–653 (2021)CrossRef
27.
go back to reference Moerman, T., et al.: GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35(12), 2159–2161 (2018)CrossRef Moerman, T., et al.: GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35(12), 2159–2161 (2018)CrossRef
28.
go back to reference Narasimhan, S., Rengaswamy, R., Vadigepalli, R.: Structural properties of gene regulatory networks: definitions and connections. IEEE/ACM Trans. Comput. Biol. Bioinf. 6(1), 158–170 (2009)CrossRef Narasimhan, S., Rengaswamy, R., Vadigepalli, R.: Structural properties of gene regulatory networks: definitions and connections. IEEE/ACM Trans. Comput. Biol. Bioinf. 6(1), 158–170 (2009)CrossRef
29.
go back to reference Nazarieh, M., Wiese, A., Will, T., Hamed, M., Helms, V.: Identification of key player genes in gene regulatory networks. BMC Syst. Biol. 10, 1–12 (2016)CrossRef Nazarieh, M., Wiese, A., Will, T., Hamed, M., Helms, V.: Identification of key player genes in gene regulatory networks. BMC Syst. Biol. 10, 1–12 (2016)CrossRef
30.
go back to reference Parikshak, N.N., et al.: Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat. Rev. Genet. 16(8), 441–458 (2015)CrossRef Parikshak, N.N., et al.: Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat. Rev. Genet. 16(8), 441–458 (2015)CrossRef
31.
go back to reference Peignier, S., Sorin, B., Calevro, F.: Ensemble learning based gene regulatory network inference. In: 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 113–120 (2021) Peignier, S., Sorin, B., Calevro, F.: Ensemble learning based gene regulatory network inference. In: 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 113–120 (2021)
32.
go back to reference Schmitt, P., et al.: GReNaDIne: a data-driven python library to infer gene regulatory networks from gene expression data. Genes 14(2), 269 (2023)CrossRef Schmitt, P., et al.: GReNaDIne: a data-driven python library to infer gene regulatory networks from gene expression data. Genes 14(2), 269 (2023)CrossRef
33.
go back to reference Segura-Ortiz, A., García-Nieto, J., et al.: GENECI: a novel evolutionary machine learning consensus-based approach for the inference of gene regulatory networks. Comput. Biol. Med. 155, 106653 (2023)CrossRef Segura-Ortiz, A., García-Nieto, J., et al.: GENECI: a novel evolutionary machine learning consensus-based approach for the inference of gene regulatory networks. Comput. Biol. Med. 155, 106653 (2023)CrossRef
34.
go back to reference Skok Gibbs, C., et al.: High-performance single-cell gene regulatory network inference at scale: the inferelator 3.0. Bioinformatics 38(9), 2519–2528 (2022) Skok Gibbs, C., et al.: High-performance single-cell gene regulatory network inference at scale: the inferelator 3.0. Bioinformatics 38(9), 2519–2528 (2022)
35.
go back to reference Watanabe, Y., Seno, S., Takenaka, Y., Matsuda, H.: An estimation method for inference of gene regulatory network using Bayesian network with uniting of partial problems. BMC Genom. 13, S12 (2012)CrossRef Watanabe, Y., Seno, S., Takenaka, Y., Matsuda, H.: An estimation method for inference of gene regulatory network using Bayesian network with uniting of partial problems. BMC Genom. 13, S12 (2012)CrossRef
36.
go back to reference Wijst, M.G.V.D., Vries, D.H.D., Brugge, H., Westra, H.J., Franke, L.: An integrative approach for building personalized gene regulatory networks for precision medicine. Genome Med. 10(1), 1–15 (2018) Wijst, M.G.V.D., Vries, D.H.D., Brugge, H., Westra, H.J., Franke, L.: An integrative approach for building personalized gene regulatory networks for precision medicine. Genome Med. 10(1), 1–15 (2018)
37.
go back to reference Wu, J., Zhao, X., Lin, Z., Shao, Z.: Large scale gene regulatory network inference with a multi-level strategy. Mol. BioSyst. 12, 588–597 (2016)CrossRef Wu, J., Zhao, X., Lin, Z., Shao, Z.: Large scale gene regulatory network inference with a multi-level strategy. Mol. BioSyst. 12, 588–597 (2016)CrossRef
38.
go back to reference Yang, B., Xu, Y.: Reconstructing gene regulation network based on conditional mutual information. In: Proceedings of the 2017 International Conference on Mechanical, Electronic, Control and Automation Engineering (MECAE 2017) (2017) Yang, B., Xu, Y.: Reconstructing gene regulation network based on conditional mutual information. In: Proceedings of the 2017 International Conference on Mechanical, Electronic, Control and Automation Engineering (MECAE 2017) (2017)
39.
go back to reference Yasuki, H., Kikuchi, M., Kurokawa, H.: Inferring method of the gene regulatory networks using neural networks adopting a majority rule. In: The 2011 International Joint Conference on Neural Networks (2011) Yasuki, H., Kikuchi, M., Kurokawa, H.: Inferring method of the gene regulatory networks using neural networks adopting a majority rule. In: The 2011 International Joint Conference on Neural Networks (2011)
40.
go back to reference Yin, F., Zhou, J., Xie, W., Zhu, Z.: Inferring sparse genetic regulatory networks based on maximum-entropy probability model and multi-objective memetic algorithm. Memetic Comput. 15(1), 117–137 (2023)CrossRef Yin, F., Zhou, J., Xie, W., Zhu, Z.: Inferring sparse genetic regulatory networks based on maximum-entropy probability model and multi-objective memetic algorithm. Memetic Comput. 15(1), 117–137 (2023)CrossRef
41.
go back to reference Zarayeneh, N., et al.: Integration of multi-omics data for integrative gene regulatory network inference. Int. J. Data Min. Bioinform. 18, 223 (2017)CrossRef Zarayeneh, N., et al.: Integration of multi-omics data for integrative gene regulatory network inference. Int. J. Data Min. Bioinform. 18, 223 (2017)CrossRef
42.
go back to reference Zhao, M., He, W., Tang, J., Zou, Q., Guo, F.: A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data. Briefings Bioinformat. 23(2), bbab568 (2022) Zhao, M., He, W., Tang, J., Zou, Q., Guo, F.: A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data. Briefings Bioinformat. 23(2), bbab568 (2022)
Metadata
Title
Exploiting Medical-Expert Knowledge Via a Novel Memetic Algorithm for the Inference of Gene Regulatory Networks
Authors
Adrián Segura-Ortiz
José García-Nieto
José F. Aldana-Montes
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-63772-8_1

Premium Partner