Skip to main content
Top

2024 | OriginalPaper | Chapter

Exploration of New Classes of Bi-univalent Functions Defined by the Subordination Principle Using \(q\)-Gegenbauer Polynomials

Authors : Abdullah Alsoboh, Ala Amourah, Maryam Salem Alatawi, Gharib Gharib, Fethiye Sakar

Published in: Mathematical Analysis and Numerical Methods

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, we introduce a new class of bi-univalent functions constructed using \(q\)-Gegenbauer polynomials. We analyze and characterize this newly defined class of functions, and derive estimates for the Taylor-Maclaurin coefficients \(|a_{2}|\) and \(|a_{3}|\). Additionally, we investigate the formulation of functional problems specific to functions within this subclass, namely \(\left| a_{3}-\sigma a_{2}^{2}\right| \) (commonly known as the Fekete-Szegö problem). By systematically exploring parameter specialization, we discover a range of novel outcomes that shed light on various aspects of our main results, contributing to a broader understanding of the mathematical landscape under investigation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Legendre, A.: Recherches sur quelques objets d’analyse indéterminée et particulièrement sur le théorème de Fermat 10, 411–434 (1785) Legendre, A.: Recherches sur quelques objets d’analyse indéterminée et particulièrement sur le théorème de Fermat 10, 411–434 (1785)
2.
go back to reference Bateman, H.: Higher Transcendental Functions. McGraw-Hill, New York (1953) Bateman, H.: Higher Transcendental Functions. McGraw-Hill, New York (1953)
3.
go back to reference Kiepiela, K., Naraniecka, I., Szynal, J.: The Gegenbauer polynomials and typically real functions. J. Comput. Applied Math. 153, 273–282 (2003)MathSciNetCrossRef Kiepiela, K., Naraniecka, I., Szynal, J.: The Gegenbauer polynomials and typically real functions. J. Comput. Applied Math. 153, 273–282 (2003)MathSciNetCrossRef
4.
go back to reference Purohit, S.D., Raina, R.K.: Certain subclasses of analytic functions associated with fractional \(q\)-calculus operators. An introduction to fractional derivatives, fractional differential equations, p. 340 (1998) Purohit, S.D., Raina, R.K.: Certain subclasses of analytic functions associated with fractional \(q\)-calculus operators. An introduction to fractional derivatives, fractional differential equations, p. 340 (1998)
5.
go back to reference Podlubny, I.: Fractional differential equations, to methods of their solution and some of their applications. Math. Scand. 2011, 55–70 Podlubny, I.: Fractional differential equations, to methods of their solution and some of their applications. Math. Scand. 2011, 55–70
6.
go back to reference Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, 96 (2004) Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, 96 (2004)
7.
8.
go back to reference Miller, S.S., Mocanu, P.T.: Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 65, 289–305 (1978)MathSciNetCrossRef Miller, S.S., Mocanu, P.T.: Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 65, 289–305 (1978)MathSciNetCrossRef
9.
go back to reference Miller, S.S., Mocanu, P.T.: Differential subordinations and univalent functions. Mich. Math. J. 28, 157–172 (1981)MathSciNetCrossRef Miller, S.S., Mocanu, P.T.: Differential subordinations and univalent functions. Mich. Math. J. 28, 157–172 (1981)MathSciNetCrossRef
10.
go back to reference Miller, S.S., Mocanu, P.T.: Differential Subordinations. Theory and Applications. Marcel Dekker Inc., New York, NY, USA (2000) Miller, S.S., Mocanu, P.T.: Differential Subordinations. Theory and Applications. Marcel Dekker Inc., New York, NY, USA (2000)
11.
go back to reference Fekete, M., Szegö, G.: Eine Bemerkung Ãber ungerade schlichte Funktionen. J. Lond. Math. Soc. 1, 85–89 (1933)CrossRef Fekete, M., Szegö, G.: Eine Bemerkung Ãber ungerade schlichte Funktionen. J. Lond. Math. Soc. 1, 85–89 (1933)CrossRef
12.
go back to reference Askey, R., Ismail, M.E.H.: A generalization of ultraspherical polynomials. In: Studies in Pure Mathematics, pp. 55–78. Birkhäuser, Basel (1983) Askey, R., Ismail, M.E.H.: A generalization of ultraspherical polynomials. In: Studies in Pure Mathematics, pp. 55–78. Birkhäuser, Basel (1983)
13.
go back to reference Chakrabarti, R., Jagannathan, R., Mohammed, S.N.: New connection formulae for the \(q\)-orthogonal polynomials via a series expansion of the \(q\)-exponential. J. Phys. Math. Gen. 39, 12371 (2006)MathSciNetCrossRef Chakrabarti, R., Jagannathan, R., Mohammed, S.N.: New connection formulae for the \(q\)-orthogonal polynomials via a series expansion of the \(q\)-exponential. J. Phys. Math. Gen. 39, 12371 (2006)MathSciNetCrossRef
15.
go back to reference Badiwi, E.I., Atshan, W.G., Alkiffai, A.N., Lupas, A.A.: Certain results on subclasses of analytic and bi-univalent functions associated with coefficient estimates and quasi-subordination. Symmetry 15(12), 2208 (2023). https://doi.org/10.3390/sym15122208 Badiwi, E.I., Atshan, W.G., Alkiffai, A.N., Lupas, A.A.: Certain results on subclasses of analytic and bi-univalent functions associated with coefficient estimates and quasi-subordination. Symmetry 15(12), 2208 (2023). https://​doi.​org/​10.​3390/​sym15122208
16.
go back to reference Amourah, A., Alamoush, A., Al-Kaseasbeh, M.: Gegenbauer polynomials and bi-univalent functions. Palest. J. Math. 10, 625–632 (2021) Amourah, A., Alamoush, A., Al-Kaseasbeh, M.: Gegenbauer polynomials and bi-univalent functions. Palest. J. Math. 10, 625–632 (2021)
17.
go back to reference Amourah, A., Alomari, M., Yousef, F., Alsoboh, A.: Consolidation of a certain discrete probability distribution with a subclass of bi-univalent functions involving Gegenbauer polynomials. Math. Probl. Eng. 2022, 6354994 (2022) Amourah, A., Alomari, M., Yousef, F., Alsoboh, A.: Consolidation of a certain discrete probability distribution with a subclass of bi-univalent functions involving Gegenbauer polynomials. Math. Probl. Eng. 2022, 6354994 (2022)
19.
go back to reference Alsoboh, A., Amourah, A., Darus, M., Al Sharefeen, R.I.: Applications of neutrosophic \(q\)-Poisson distribution series for subclass of analytic functions and bi-univalent functions. Mathematics 11(4), 868 Alsoboh, A., Amourah, A., Darus, M., Al Sharefeen, R.I.: Applications of neutrosophic \(q\)-Poisson distribution series for subclass of analytic functions and bi-univalent functions. Mathematics 11(4), 868
20.
go back to reference Yousef, F., Frasin, B.A., Al-Hawary, T.: Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. arXiv preprint arXiv:1801.09531 (2018), 9 p. Yousef, F., Frasin, B.A., Al-Hawary, T.: Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. arXiv preprint arXiv:​1801.​09531 (2018), 9 p.
22.
go back to reference Gerhold, S.: Asymptotics for a variant of the Mittag-Leffler function. Int. Transf. Spec. Funct. 23(6), 397–403 (2012)MathSciNetCrossRef Gerhold, S.: Asymptotics for a variant of the Mittag-Leffler function. Int. Transf. Spec. Funct. 23(6), 397–403 (2012)MathSciNetCrossRef
23.
go back to reference Schneider, W.: Completely monotone generalized Mittag-Leffler functions. Expo Math. 14, 3–16 (1996)MathSciNet Schneider, W.: Completely monotone generalized Mittag-Leffler functions. Expo Math. 14, 3–16 (1996)MathSciNet
24.
go back to reference Sharma, S.K., Jain R.: On some properties of generalized \(q\)-Mittag Leffler function. Math. Aeterna 4(6), 613–619 (2014) Sharma, S.K., Jain R.: On some properties of generalized \(q\)-Mittag Leffler function. Math. Aeterna 4(6), 613–619 (2014)
25.
go back to reference Gerhold, S.: Asymptotics for a variant of the Mittag-Leffler function. Integr. Transforms Spec. Funct. 23(6), 397–403 (2012)MathSciNetCrossRef Gerhold, S.: Asymptotics for a variant of the Mittag-Leffler function. Integr. Transforms Spec. Funct. 23(6), 397–403 (2012)MathSciNetCrossRef
26.
go back to reference Garra, R., Polito, F.: On some operators involving Hadamard derivatives. Int. Transforms Spec. Funct. 24(10), 773–782 (2013)MathSciNetCrossRef Garra, R., Polito, F.: On some operators involving Hadamard derivatives. Int. Transforms Spec. Funct. 24(10), 773–782 (2013)MathSciNetCrossRef
27.
go back to reference Seoudy, T., Aouf, M.: Admissible classes of multivalent functions associated with an integral operator. Ann. Univ. Mariae Curie-Sklodowska, sectio A-Math. 73(1), 57–73 (2019)MathSciNet Seoudy, T., Aouf, M.: Admissible classes of multivalent functions associated with an integral operator. Ann. Univ. Mariae Curie-Sklodowska, sectio A-Math. 73(1), 57–73 (2019)MathSciNet
29.
30.
31.
go back to reference Murugusundaramoorthy, G., Magesh, N., Prameela, V.: Coefficient bounds for certain subclasses of bi-univalent function. Abstr. Appl. Anal. 2013, 573017 (2013) Murugusundaramoorthy, G., Magesh, N., Prameela, V.: Coefficient bounds for certain subclasses of bi-univalent function. Abstr. Appl. Anal. 2013, 573017 (2013)
33.
go back to reference Peng, Z., Murugusundaramoorthy, G., Janani, T.: Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator. J. Complex Anal. 2014, 693908 (2014) Peng, Z., Murugusundaramoorthy, G., Janani, T.: Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator. J. Complex Anal. 2014, 693908 (2014)
34.
go back to reference Srivastava, H.M., Mishra, A.K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 23, 1188–1192 (2010)MathSciNetCrossRef Srivastava, H.M., Mishra, A.K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 23, 1188–1192 (2010)MathSciNetCrossRef
35.
go back to reference Altinkaya, S., Yalcin, S.: Estimates on coefficients of a general subclass of bi-univalent functions associated with symmetric Altinkaya, S., Yalcin, S.: Estimates on coefficients of a general subclass of bi-univalent functions associated with symmetric
36.
go back to reference Tan, D.L.: Coefficicent estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 5, 559–568 (1984) Tan, D.L.: Coefficicent estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 5, 559–568 (1984)
37.
go back to reference Shammaky A.E., Frasin, B.A., Seoudy, Subclass of analytic functions related with Pascal distribution series. J. Math. 2022, (2020), Article ID 8355285 Shammaky A.E., Frasin, B.A., Seoudy, Subclass of analytic functions related with Pascal distribution series. J. Math. 2022, (2020), Article ID 8355285
38.
go back to reference Sunthrayuth, P., Iqbal, N., Naeem, M., Jawarneh, Y., Samura, S.K.: The sharp upper bounds of the Hankel determinant on logarithmic coefficients for certain analytic functions connected with eight-shaped domains. J. Funct. Spaces 2022 (2022), Article ID 2229960, 12 p. https://doi.org/10.1155/2022/2229960 Sunthrayuth, P., Iqbal, N., Naeem, M., Jawarneh, Y., Samura, S.K.: The sharp upper bounds of the Hankel determinant on logarithmic coefficients for certain analytic functions connected with eight-shaped domains. J. Funct. Spaces 2022 (2022), Article ID 2229960, 12 p. https://​doi.​org/​10.​1155/​2022/​2229960
39.
go back to reference Alsoboh, A., Darus, M.: On Fekete-Szegö problems for certain subclasses of analytic functions defined by differential operator involving \(q\)-Ruscheweyh operator. J. Funct. Space 2020, Article ID 8459405 (2020), 6 p. Alsoboh, A., Darus, M.: On Fekete-Szegö problems for certain subclasses of analytic functions defined by differential operator involving \(q\)-Ruscheweyh operator. J. Funct. Space 2020, Article ID 8459405 (2020), 6 p.
40.
go back to reference Anakira, N.R., Alomari, A.K., Hashim, I.: Application of optimal homotopy asymptotic method for solving linear delay differential equations. In: AIP Conference Proceedings, vol. 1571(1), pp. 1013–1019, American Institute of Physics (2013) Anakira, N.R., Alomari, A.K., Hashim, I.: Application of optimal homotopy asymptotic method for solving linear delay differential equations. In: AIP Conference Proceedings, vol. 1571(1), pp. 1013–1019, American Institute of Physics (2013)
41.
go back to reference Al-Ahmad, S., Anakira, N.R., Mamat, M., Suliman, I.M., AlAhmad, R.: Modified differential transformation scheme for solving classes of non-linear differential equations. TWMS J. Appl. Eng., Math. (2021) Al-Ahmad, S., Anakira, N.R., Mamat, M., Suliman, I.M., AlAhmad, R.: Modified differential transformation scheme for solving classes of non-linear differential equations. TWMS J. Appl. Eng., Math. (2021)
42.
go back to reference Amourah, A.A., Yousef, F., Al-Hawary, T., Darus, M.: On a class of p-valent non-Bazilevic functions of Order \(\mu +i\beta \). Int. J. Math. Anal. 10(15), 701–710 (2016)CrossRef Amourah, A.A., Yousef, F., Al-Hawary, T., Darus, M.: On a class of p-valent non-Bazilevic functions of Order \(\mu +i\beta \). Int. J. Math. Anal. 10(15), 701–710 (2016)CrossRef
43.
go back to reference Amourah, A., Frasin, B.A., Al-Hawary, T.: Coefficient estimates for a subclass of bi-univalent functions associated with symmetric q-derivative operator by means of the Gegenbauer polynomials. Kyungpook Math. J. 62(2), 257–269 (2022)MathSciNet Amourah, A., Frasin, B.A., Al-Hawary, T.: Coefficient estimates for a subclass of bi-univalent functions associated with symmetric q-derivative operator by means of the Gegenbauer polynomials. Kyungpook Math. J. 62(2), 257–269 (2022)MathSciNet
44.
go back to reference Amourah, A., Abdelkarim, H., AL-Elaumi, A.: \((p, q)\)-Chebyshev polynomials and their applications to bi-univalent functions. TWMS J. Appl. Eng. Math. 12(2), 481–486 (2022) Amourah, A., Abdelkarim, H., AL-Elaumi, A.: \((p, q)\)-Chebyshev polynomials and their applications to bi-univalent functions. TWMS J. Appl. Eng. Math. 12(2), 481–486 (2022)
45.
go back to reference Amourah, A.A., Al-Hawary, T., Darus, M.: Some properties of the class of univalent functions involving a new generalized differential operator. J. Comput. Theor. Nanosci. 13(10), 6797–6799 (2016)CrossRef Amourah, A.A., Al-Hawary, T., Darus, M.: Some properties of the class of univalent functions involving a new generalized differential operator. J. Comput. Theor. Nanosci. 13(10), 6797–6799 (2016)CrossRef
46.
go back to reference Alsoboh, A., Darus, M.: On Fekete-Szego problem associated with \(q\)-derivative operator. J. Phys.: Conf. Ser. 1212(1), 012003 (2019) Alsoboh, A., Darus, M.: On Fekete-Szego problem associated with \(q\)-derivative operator. J. Phys.: Conf. Ser. 1212(1), 012003 (2019)
47.
go back to reference Zaprawa, P.: On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc.-Simon Stevin 21(1), 169–178 (2014)MathSciNetCrossRef Zaprawa, P.: On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc.-Simon Stevin 21(1), 169–178 (2014)MathSciNetCrossRef
Metadata
Title
Exploration of New Classes of Bi-univalent Functions Defined by the Subordination Principle Using -Gegenbauer Polynomials
Authors
Abdullah Alsoboh
Ala Amourah
Maryam Salem Alatawi
Gharib Gharib
Fethiye Sakar
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4876-1_24

Premium Partner