Skip to main content
Top
Published in: Cluster Computing 2/2019

17-03-2018

Exploration of polygons in online social networks

Authors: Xiaoping Zhou, Xun Liang, Jichao Zhao, Aakas Zhiyuli, Haiyan Zhang

Published in: Cluster Computing | Special Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Online social networks have continued to attract increased attention since the introduction of this concept nearly three decades ago. Consequently, a study about the workings of online social networks may help in understanding the structure of human society and the characteristics of generic complex networks. Over the past few years, interest in neighboring nodes, which are the number of nodes between any two nodes, the number of neighbors and how many triangles are present in a social network have produced the concepts of a six-degree separation (Milgram, Psychol Today 2(1):60–67, 1967; Backstrom et al., Proceedings of the 4th annual ACM web science conference, p 33–42, 2012), a heavy tail in the degree distribution (Barabási, Albert, Science 286(5439):509–512, 1999) and a high clustering coefficient (Luce, Perry, Psychometrika 14(2):95–116, 1949; Watts, Strogatz, Nature 393(6684):440–442, 1998; Amaral et al., Proc Natl Acad Sci USA 97(21):11149–11152, 2000). In a similar manner, researchers have also been curious about how many polygons are present in a given online social network. Although much effort has been expended (Dantzig et al., International symposium on theory of graphs, p 77–83, 1967; Kamae, IEEE Trans Circuit Theory 14(2):166–171, 1967; Gotlieb, Corneil, Commun ACM 10(12):780–783, 1967; Welch, J ACM 13(2):205–210, 1966; Tiernan, Commun ACM 13(12):722–726, 1970; Tarjan, SIAM J Comput 2(3):211–216, 1973; Johnson, SIAM J Comput 4:77–84, 1975; Mateti, Deo, SIAM J Comput 5(5):90–99, 1976; Marinari et al., Europhys Lett 73(3):301–307, 2005), studying this subject, the inability to enumerate polygons has stymied an in depth understanding of the properties of polygons in an online social network. In the study described in this paper, the estimated number of polygons in an online social network is revealed. It was found that in the current widely used online social networks, e.g., Facebook, Twitter, the number of polygons increases drastically when the length of a polygon is below a set value and then it decreases rapidly. The average length of the network polygons was calculated and it was found that online social networks contain a relatively large average length of polygons. Based on this perspective, a massive labyrinth of polygons would make the online social networks appear to be very complicated. To further investigate this area, a generalized clustering coefficient was explored. Results showed that the generalized clustering coefficient appeared to descend exponentially with the length of polygon and expeditiously approached zero. This result suggested that the polygons with large lengths should be ignored in many scenarios. Since the polygons with lengths greater than five appeared to have little impact on the network, the online social networks appeared to be less complex than anticipated. The polygon is one of the fundamental problems in graph theory and complex networks, so that the work reported here may be beneficial for many disciplines, including transportation [7], engineering [8], computer science [916], physics (Birmelé et al., Proceedings of the 24th annual ACM–SIAM symposium on discrete algorithms, p 1884–1896, 2013), sociology (Motter, Albert, Phys Today 65:43, 2012), epidemiology (Feld, Am J Sociol 96(6):1464–1477, 1991; Cohen et al., Phys Rev Lett 91(24):12343, 2002), psychology (Sun et al., Sci Rep 4(6188):5099–5099, 2014), biology (Feiler, Kleinbaum, Psychol Sci, 2015), medicine (Kincaid, Pilette, Comput Appl Biosci Cabios 8:267–273, 1992), geography (Kim et al., Lancet 386(9989):145–153, 2015), etc.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Milgram, S.: The small world problem. Psychol. Today 2(1), 60–67 (1967) Milgram, S.: The small world problem. Psychol. Today 2(1), 60–67 (1967)
2.
go back to reference Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four degrees of separation. In: Proceedings of the 4th Annual ACM Web Science Conference, pp 33–42 (2012) Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four degrees of separation. In: Proceedings of the 4th Annual ACM Web Science Conference, pp 33–42 (2012)
3.
go back to reference Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999) Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
4.
go back to reference Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949) Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)
5.
go back to reference Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998) Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)
6.
go back to reference Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl Acad. Sci. USA 97(21), 11149–11152 (2000) Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl Acad. Sci. USA 97(21), 11149–11152 (2000)
7.
go back to reference Dantzig, G.B., Blattner, W.O., Rao, M.R.: Finding a cycle in a graph with minimum cost to time ratio with application to a ship routing problem. In: International Symposium on Theory of Graphs, pp 77–83 (1967) Dantzig, G.B., Blattner, W.O., Rao, M.R.: Finding a cycle in a graph with minimum cost to time ratio with application to a ship routing problem. In: International Symposium on Theory of Graphs, pp 77–83 (1967)
8.
go back to reference Kamae, T.: A systematic method of finding all directed circuits and enumerating all directed paths. IEEE Trans. Circuit Theory 14(2), 166–171 (1967) Kamae, T.: A systematic method of finding all directed circuits and enumerating all directed paths. IEEE Trans. Circuit Theory 14(2), 166–171 (1967)
9.
go back to reference Gotlieb, C.G., Corneil, D.G.: Algorithms for finding a fundamental set of cycles for an undirected linear graph. Commun. ACM 10(12), 780–783 (1967) Gotlieb, C.G., Corneil, D.G.: Algorithms for finding a fundamental set of cycles for an undirected linear graph. Commun. ACM 10(12), 780–783 (1967)
10.
go back to reference Welch, J.T.: A mechanical analysis of the cyclic structure of undirected linear graphs. J. ACM 13(2), 205–210 (1966) Welch, J.T.: A mechanical analysis of the cyclic structure of undirected linear graphs. J. ACM 13(2), 205–210 (1966)
11.
go back to reference Tiernan, J.C.: An efficient search algorithm to find the elementary circuits of a graph. Commun. ACM 13(12), 722–726 (1970) Tiernan, J.C.: An efficient search algorithm to find the elementary circuits of a graph. Commun. ACM 13(12), 722–726 (1970)
12.
go back to reference Tarjan, R.: Enumeration of the elementary circuits of a directed graph. SIAM J. Comput. 2(3), 211–216 (1973) Tarjan, R.: Enumeration of the elementary circuits of a directed graph. SIAM J. Comput. 2(3), 211–216 (1973)
13.
go back to reference Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J. Comput. 4, 77–84 (1975) Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J. Comput. 4, 77–84 (1975)
14.
go back to reference Mateti, P., Deo, N.: On algorithms for enumerating all circuits of a graph. SIAM J. Comput. 5(5), 90–99 (1976) Mateti, P., Deo, N.: On algorithms for enumerating all circuits of a graph. SIAM J. Comput. 5(5), 90–99 (1976)
15.
go back to reference Marinari, E., Monasson, R., Semerjian, G.: An algorithm for counting circuits: application to real-world and random graphs. Europhys. Lett. 73(3), 301–307 (2005) Marinari, E., Monasson, R., Semerjian, G.: An algorithm for counting circuits: application to real-world and random graphs. Europhys. Lett. 73(3), 301–307 (2005)
16.
go back to reference Birmelé, E., Ferreira, R., Grossi, R, et al.: Optimal listing of cycles and st-paths in undirected graphs. In: Proceedings of the 24th Annual ACM–SIAM Symposium on Discrete Algorithms, pp 1884–1896 (2013) Birmelé, E., Ferreira, R., Grossi, R, et al.: Optimal listing of cycles and st-paths in undirected graphs. In: Proceedings of the 24th Annual ACM–SIAM Symposium on Discrete Algorithms, pp 1884–1896 (2013)
17.
go back to reference Motter, A.E., Albert, R.: Networks in motion. Phys. Today 65, 43 (2012) Motter, A.E., Albert, R.: Networks in motion. Phys. Today 65, 43 (2012)
18.
go back to reference Feld, S.L.: Why your friends have more friends than you do. Am. J. Sociol. 96(6), 1464–1477 (1991) Feld, S.L.: Why your friends have more friends than you do. Am. J. Sociol. 96(6), 1464–1477 (1991)
19.
go back to reference Cohen, R., Benavraham, D., Havlin, S.: Efficient immunization of populations and computers. Phys. Rev. Lett. 91(24), 12343 (2002) Cohen, R., Benavraham, D., Havlin, S.: Efficient immunization of populations and computers. Phys. Rev. Lett. 91(24), 12343 (2002)
20.
go back to reference Sun, L., Axhausen, K.W., Lee, D.H., Cebrian, M.: Efficient detection of contagious outbreaks in massive metropolitan encounter networks. Sci. Rep. 4(6188), 5099–5099 (2014) Sun, L., Axhausen, K.W., Lee, D.H., Cebrian, M.: Efficient detection of contagious outbreaks in massive metropolitan encounter networks. Sci. Rep. 4(6188), 5099–5099 (2014)
22.
go back to reference Kincaid, D.T., Pilette, R.: Construction of simple pathways and simple cycles in ecosystems. Comput. Appl. Biosci. Cabios 8, 267–273 (1992) Kincaid, D.T., Pilette, R.: Construction of simple pathways and simple cycles in ecosystems. Comput. Appl. Biosci. Cabios 8, 267–273 (1992)
23.
go back to reference Kim, D.A., et al.: Social network targeting to maximise population behaviour change: a cluster randomised controlled trial. Lancet 386(9989), 145–153 (2015) Kim, D.A., et al.: Social network targeting to maximise population behaviour change: a cluster randomised controlled trial. Lancet 386(9989), 145–153 (2015)
24.
go back to reference Hambrey, M.J., et al.: Sedimentological, geomorphological and dynamic context of debris-mantled glaciers, Mount Everest (Sagarmatha) region, Nepal. Quat. Sci. Rev. 27(s 25–26), 2361–2389 (2008) Hambrey, M.J., et al.: Sedimentological, geomorphological and dynamic context of debris-mantled glaciers, Mount Everest (Sagarmatha) region, Nepal. Quat. Sci. Rev. 27(s 25–26), 2361–2389 (2008)
25.
go back to reference Tulczyjew, W.M.: The Legendre transformation. Ann. Inst. Henri Poincaré 27, 101–114 (1977) Tulczyjew, W.M.: The Legendre transformation. Ann. Inst. Henri Poincaré 27, 101–114 (1977)
26.
go back to reference Katsura, S., Takizawa, M.: Bethe lattice and the Bethe approximation. Prog. Theor. Phys. 51, 82–98 (1974) Katsura, S., Takizawa, M.: Bethe lattice and the Bethe approximation. Prog. Theor. Phys. 51, 82–98 (1974)
27.
go back to reference Yedidia, J.S., Freeman, W.T., Weiss, Y.: Generalized belief propagation. NIPS 13, 689–695 (2000) Yedidia, J.S., Freeman, W.T., Weiss, Y.: Generalized belief propagation. NIPS 13, 689–695 (2000)
28.
go back to reference Marinari, E., Semerjian, G.: On the number of circuits in random graphs. J. Stat. Mech. Theory Exp. 2006, P06019 (2006) Marinari, E., Semerjian, G.: On the number of circuits in random graphs. J. Stat. Mech. Theory Exp. 2006, P06019 (2006)
29.
go back to reference Erdos, P., Renyi, A.: On random graphs I. Publ. Math. 6, 290–297 (1959) Erdos, P., Renyi, A.: On random graphs I. Publ. Math. 6, 290–297 (1959)
Metadata
Title
Exploration of polygons in online social networks
Authors
Xiaoping Zhou
Xun Liang
Jichao Zhao
Aakas Zhiyuli
Haiyan Zhang
Publication date
17-03-2018
Publisher
Springer US
Published in
Cluster Computing / Issue Special Issue 2/2019
Print ISSN: 1386-7857
Electronic ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-018-2434-2

Other articles of this Special Issue 2/2019

Cluster Computing 2/2019 Go to the issue

Premium Partner