Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

12. Explorative Synthesis of Novel Nitride Compounds by Ammonothermal Synthesis

Authors : Mathias Mallmann, Niklas Cordes, Wolfgang Schnick

Published in: Ammonothermal Synthesis and Crystal Growth of Nitrides

Publisher: Springer International Publishing

Abstract

This chapter provides a brief overview of the synthesis of nitrides and oxonitrides by the ammonothermal method. Numerous binary, ternary and multinary nitrides as well as oxonitrides are discussed. The synthesis conditions with regard to the temperatures, pressures, precursors and mineralizers are mentioned. In addition, the crystal structure of the respective compounds will be briefly described. Since most of these compounds possess interesting electronic and optical properties, the bandgaps of the compounds are discussed in more detail and are summarized at the end.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Juza, H. Jacobs, Ammonothermalsynthese von Magnesium‐ und Berylliumamid. Angew. Chem. 78, 208 (1966). R. Juza, H. Jacobs, Ammonothermal synthesis of magnesium and beryllium amides. Angew. Chem. Int. Ed. 5, 247 (1966) R. Juza, H. Jacobs, Ammonothermalsynthese von Magnesium‐ und Berylliumamid. Angew. Chem. 78, 208 (1966). R. Juza, H. Jacobs, Ammonothermal synthesis of magnesium and beryllium amides. Angew. Chem. Int. Ed. 5, 247 (1966)
2.
go back to reference H. Jacobs, D. Schmidt, High-pressure ammonolysis in solid-state chemistry. Curr. Top. Mater. Sci. 8, 381 (1982) H. Jacobs, D. Schmidt, High-pressure ammonolysis in solid-state chemistry. Curr. Top. Mater. Sci. 8, 381 (1982)
3.
go back to reference H. Jacobs, U. Fink, Investigation of the system potassium/europium/ammonia. Z. Anorg. Allg. Chem. 438, 151 (1978) CrossRef H. Jacobs, U. Fink, Investigation of the system potassium/europium/ammonia. Z. Anorg. Allg. Chem. 438, 151 (1978) CrossRef
4.
go back to reference H. Jacobs, D. Schmidt, Struktur und Eigenschaften von perowskitartigen Cäsiumamidometallaten des Cers, Neodyms und Samariums Cs 3Ln 2(NH 2) 9. J. Less-Common Met. 76, 227 (1980) H. Jacobs, D. Schmidt, Struktur und Eigenschaften von perowskitartigen Cäsiumamidometallaten des Cers, Neodyms und Samariums Cs 3Ln 2(NH 2) 9. J. Less-Common Met. 76, 227 (1980)
5.
go back to reference H. Jacobs, H. Kistrup, The system potassium/samarium/ammonia. Z. Anorg. Allg. Chem. 435, 127 (1977) CrossRef H. Jacobs, H. Kistrup, The system potassium/samarium/ammonia. Z. Anorg. Allg. Chem. 435, 127 (1977) CrossRef
6.
go back to reference A. Stuhr, H. Jocobs, R. Juza, Amide des Yttriums. Z. Anorg. Allg. Chem. 395, 291 (1973) A. Stuhr, H. Jocobs, R. Juza, Amide des Yttriums. Z. Anorg. Allg. Chem. 395, 291 (1973)
7.
go back to reference G. Linde, R. Juza, Amidometallate von Lanthan und Gadolinium und Umsetzung von Lanthan, Gadolinium und Scandium mit Ammoniak. Z. Anorg. Allg. Chem. 409, 191 (1974) CrossRef G. Linde, R. Juza, Amidometallate von Lanthan und Gadolinium und Umsetzung von Lanthan, Gadolinium und Scandium mit Ammoniak. Z. Anorg. Allg. Chem. 409, 191 (1974) CrossRef
8.
go back to reference D. Ehrentraut, E. Meissner, M. Bockowski, Technology of Gallium Nitride Crystal Growth (Springer, Berlin, Heidelberg, 2010), p. 3 CrossRef D. Ehrentraut, E. Meissner, M. Bockowski, Technology of Gallium Nitride Crystal Growth (Springer, Berlin, Heidelberg, 2010), p. 3 CrossRef
9.
go back to reference D. Ehrentraut, R.T. Pakalapati, D.S. Kamber, W. Jiang, D.W. Pocius, B.C. Downey, M. McLaurin, M.P. D’Evelyn, High quality, low cost ammonothermal bulk GaN substrates. Jpn. J. Appl. Phys. 52, 08JA01 (2013) D. Ehrentraut, R.T. Pakalapati, D.S. Kamber, W. Jiang, D.W. Pocius, B.C. Downey, M. McLaurin, M.P. D’Evelyn, High quality, low cost ammonothermal bulk GaN substrates. Jpn. J. Appl. Phys. 52, 08JA01 (2013)
10.
go back to reference W. Jiang, D. Ehrentraut, J. Cook, D.S. Kamber, R.T. Pakalapati, M.P. D’Evelyn, Transparent, conductive bulk GaN by high temperature ammonothermal growth. Phys. Status Solidi B 252, 1069 (2015) CrossRef W. Jiang, D. Ehrentraut, J. Cook, D.S. Kamber, R.T. Pakalapati, M.P. D’Evelyn, Transparent, conductive bulk GaN by high temperature ammonothermal growth. Phys. Status Solidi B 252, 1069 (2015) CrossRef
11.
go back to reference R. Dwilinski, R. Doradzinski, J. Garczynski, L. Sierzputowski, M. Palczewska, A. Wysmolek, M. Kaminska, AMMONO method of BN, AlN and GaN synthesis and crystal growth. MRS Internet J. Nitride Semicond. Res. 3, e25 (1998) R. Dwilinski, R. Doradzinski, J. Garczynski, L. Sierzputowski, M. Palczewska, A. Wysmolek, M. Kaminska, AMMONO method of BN, AlN and GaN synthesis and crystal growth. MRS Internet J. Nitride Semicond. Res. 3, e25 (1998)
12.
go back to reference D. Peters, Ammonothermal synthesis of aluminum nitride. J. Cryst. Growth 104, 411 (1990) CrossRef D. Peters, Ammonothermal synthesis of aluminum nitride. J. Cryst. Growth 104, 411 (1990) CrossRef
13.
go back to reference Y.C. Lan, X.L. Chen, Y.G. Cao, Y.P. Xu, L.D. Xun, T. Xu, J.K. Liang, Low-temperature synthesis and photoluminescence of AlN. J. Cryst. Growth 207, 247 (1999) CrossRef Y.C. Lan, X.L. Chen, Y.G. Cao, Y.P. Xu, L.D. Xun, T. Xu, J.K. Liang, Low-temperature synthesis and photoluminescence of AlN. J. Cryst. Growth 207, 247 (1999) CrossRef
14.
go back to reference B.T. Adekore, K. Rakes, B. Wang, M.J. Callahan, S. Pendurti, Z. Sitar, Ammonothermal synthesis of aluminum nitride crystals on group III-nitride templates. J. Electron. Mater. 35, 1104 (2006) CrossRef B.T. Adekore, K. Rakes, B. Wang, M.J. Callahan, S. Pendurti, Z. Sitar, Ammonothermal synthesis of aluminum nitride crystals on group III-nitride templates. J. Electron. Mater. 35, 1104 (2006) CrossRef
15.
go back to reference J. Hertrampf, P. Becker, M. Widenmeyer, A. Weidenkaff, E. Schlücker, R. Niewa, Ammonothermal crystal growth of indium nitride. Cryst. Growth Des. 18, 2365 (2018) CrossRef J. Hertrampf, P. Becker, M. Widenmeyer, A. Weidenkaff, E. Schlücker, R. Niewa, Ammonothermal crystal growth of indium nitride. Cryst. Growth Des. 18, 2365 (2018) CrossRef
16.
go back to reference K.S.A. Butcher, T.L. Tansley, InN, latest development and a review of the band-gap controversy. Superlattices Microstruct. 38, 1 (2005) CrossRef K.S.A. Butcher, T.L. Tansley, InN, latest development and a review of the band-gap controversy. Superlattices Microstruct. 38, 1 (2005) CrossRef
17.
go back to reference H. Jacobs, C. Stüve, Hochdrucksynthese der η-Phase im system Mn-N: Mn 3N 2. J. Less-Common Met. 96, 323 (1984) H. Jacobs, C. Stüve, Hochdrucksynthese der η-Phase im system Mn-N: Mn 3N 2. J. Less-Common Met. 96, 323 (1984)
18.
go back to reference G. Kreiner, H. Jacobs, Magnetische Struktur von η-Mn 3N 2. J. Alloys Compd. 183, 345 (1992) CrossRef G. Kreiner, H. Jacobs, Magnetische Struktur von η-Mn 3N 2. J. Alloys Compd. 183, 345 (1992) CrossRef
19.
go back to reference M. Zając, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmołek, K. Korona, M. Kamińska, A. Twardowski, Ammonothermal synthesis of GaN doped with transition metal ions (Mn, Fe, Cr). J. Alloys Compd. 456, 324 (2008) CrossRef M. Zając, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmołek, K. Korona, M. Kamińska, A. Twardowski, Ammonothermal synthesis of GaN doped with transition metal ions (Mn, Fe, Cr). J. Alloys Compd. 456, 324 (2008) CrossRef
20.
go back to reference H. Jacobs, J. Bock, Einkristallzüchtung von γ′-Fe 4N in überkritischem Ammoniak. J. Less-Common Met. 134, 215 (1987) CrossRef H. Jacobs, J. Bock, Einkristallzüchtung von γ′-Fe 4N in überkritischem Ammoniak. J. Less-Common Met. 134, 215 (1987) CrossRef
21.
go back to reference U. Zachwieja, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, Cu 3N. J. Less-Common Met. 161, 175 (1990) CrossRef U. Zachwieja, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, Cu 3N. J. Less-Common Met. 161, 175 (1990) CrossRef
22.
go back to reference H. Jacobs, E. von Pinkowski, Synthese ternärer Nitride von Alkalimetallen: Verbindungen mit Tantal, MTaN 2 mit M ≡ Na, K, Rb und Cs. J. Less-Common Met. 146, 147 (1989) CrossRef H. Jacobs, E. von Pinkowski, Synthese ternärer Nitride von Alkalimetallen: Verbindungen mit Tantal, MTaN 2 mit M ≡ Na, K, Rb und Cs. J. Less-Common Met. 146, 147 (1989) CrossRef
23.
go back to reference N. Cordes, W. Schnick, Ammonothermal synthesis of crystalline oxonitride perovskites LnTaON 2 ( Ln = La, Ce, Pr, Nd, Sm, Gd). Chem. Eur. J. 23, 11410 (2017) CrossRef N. Cordes, W. Schnick, Ammonothermal synthesis of crystalline oxonitride perovskites LnTaON 2 ( Ln = La, Ce, Pr, Nd, Sm, Gd). Chem. Eur. J. 23, 11410 (2017) CrossRef
24.
go back to reference J. Häusler, Ammonothermal synthesis of functional ternary and multinary nitrides. Dissertation, LMU München (2018) J. Häusler, Ammonothermal synthesis of functional ternary and multinary nitrides. Dissertation, LMU München (2018)
25.
go back to reference T. Brokamp, H. Jacobs, Synthese und Kristallstruktur eines gemischtvalenten Lithium-Tantalnitrids Li 2Ta 3N 5. J. Alloys Compd. 176, 47 (1991) CrossRef T. Brokamp, H. Jacobs, Synthese und Kristallstruktur eines gemischtvalenten Lithium-Tantalnitrids Li 2Ta 3N 5. J. Alloys Compd. 176, 47 (1991) CrossRef
26.
go back to reference H. Jacobs, H. Mengis, Preparation and crystal structure of a sodium silicon nitride, NaSi 2N 3. Eur. J. Solid State Inorg. Chem. 30, 45 (1993) H. Jacobs, H. Mengis, Preparation and crystal structure of a sodium silicon nitride, NaSi 2N 3. Eur. J. Solid State Inorg. Chem. 30, 45 (1993)
27.
go back to reference D. Peters, E.F. Paulus, H. Jacobs, Preparation and crystal structure of a potassium imidenitridesilicate, K 3Si 6N 5(NH) 6. Z. Anorg. Allg. Chem. 584, 129 (1990) CrossRef D. Peters, E.F. Paulus, H. Jacobs, Preparation and crystal structure of a potassium imidenitridesilicate, K 3Si 6N 5(NH) 6. Z. Anorg. Allg. Chem. 584, 129 (1990) CrossRef
28.
go back to reference J. Häusler, R. Niklaus, J. Minár, W. Schnick, Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N 2, Mn-IV-N 2 and Li-IV 2-N 3 (IV = Si, Ge). Chem. Eur. J. 24, 1686 (2018) CrossRef J. Häusler, R. Niklaus, J. Minár, W. Schnick, Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N 2, Mn-IV-N 2 and Li-IV 2-N 3 (IV = Si, Ge). Chem. Eur. J. 24, 1686 (2018) CrossRef
29.
go back to reference J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN 2 and ZnGeN 2 and dissolution monitoring by in situ X-ray imaging. Chem. Eur. J. 23, 12275 (2017) CrossRef J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN 2 and ZnGeN 2 and dissolution monitoring by in situ X-ray imaging. Chem. Eur. J. 23, 12275 (2017) CrossRef
30.
go back to reference T.M.M. Richter, S. LeTonquesse, N.S.A. Alt, E. Schlücker, R. Niewa, Trigonal-bipyramidal coordination in first ammoniates of ZnF 2: ZnF 2(NH 3) 3 and ZnF 2(NH 3) 2. Inorg. Chem. 55, 2488 (2016) CrossRef T.M.M. Richter, S. LeTonquesse, N.S.A. Alt, E. Schlücker, R. Niewa, Trigonal-bipyramidal coordination in first ammoniates of ZnF 2: ZnF 2(NH 3) 3 and ZnF 2(NH 3) 2. Inorg. Chem. 55, 2488 (2016) CrossRef
31.
go back to reference Y. Hinuma, T. Hatakeyama, Y. Kumagai, L.A. Burton, H. Sato, Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono, F. Oba, Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nat. Commun. 7, 11962 (2016) CrossRef Y. Hinuma, T. Hatakeyama, Y. Kumagai, L.A. Burton, H. Sato, Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono, F. Oba, Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nat. Commun. 7, 11962 (2016) CrossRef
32.
go back to reference D. Naveh, L. Kronik, Spin-polarized electronic structure of Mn-IV-V 2 chalcopyrites. Phys. Status Solidi B 243, 2159 (2006) CrossRef D. Naveh, L. Kronik, Spin-polarized electronic structure of Mn-IV-V 2 chalcopyrites. Phys. Status Solidi B 243, 2159 (2006) CrossRef
33.
go back to reference C.J. Duan, A.C.A. Delsing, H.T. Hintzen, Red emission from Mn 2+ on a tetrahedral site in MgSiN 2. J. Lumin. 129, 645 (2009) CrossRef C.J. Duan, A.C.A. Delsing, H.T. Hintzen, Red emission from Mn 2+ on a tetrahedral site in MgSiN 2. J. Lumin. 129, 645 (2009) CrossRef
34.
go back to reference T. de Boer, P. Strobel, J. Häusler, W. Schnick, A. Moewes, Band gap and electronic structure of Zn(Ge,Si)N 2: probing defects using XEOL, in Advanced Light Source (ALS) User Meeting, Berkeley, CA (2017) T. de Boer, P. Strobel, J. Häusler, W. Schnick, A. Moewes, Band gap and electronic structure of Zn(Ge,Si)N 2: probing defects using XEOL, in Advanced Light Source (ALS) User Meeting, Berkeley, CA (2017)
35.
go back to reference F. Kawamura, N. Yamada, M. Imai, T. Taniguchi, Synthesis of ZnSnN 2 crystals via a high-pressure metathesis reaction. Cryst. Res. Technol. 51, 220 (2016) CrossRef F. Kawamura, N. Yamada, M. Imai, T. Taniguchi, Synthesis of ZnSnN 2 crystals via a high-pressure metathesis reaction. Cryst. Res. Technol. 51, 220 (2016) CrossRef
36.
go back to reference H. Jacobs, R. Nymwegen, Synthesis and crystal structure of a potassium nitridophosphate, K 3P 6N 11. Z. Anorg. Allg. Chem. 623, 429 (1997) CrossRef H. Jacobs, R. Nymwegen, Synthesis and crystal structure of a potassium nitridophosphate, K 3P 6N 11. Z. Anorg. Allg. Chem. 623, 429 (1997) CrossRef
37.
go back to reference U. Müller, Anorganische Strukturchemie, 6th edn. (Vieweg + Teubner, Wiesbaden, 2008), p. 246 U. Müller, Anorganische Strukturchemie, 6th edn. (Vieweg + Teubner, Wiesbaden, 2008), p. 246
38.
go back to reference H. Jacobs, R. Nymwegen, S. Doyle, T. Wroblewski, W. Kockelmann, Crystalline phosphorus(V) nitride imide, HPN 2 and DPN 2, respectively—structure determination with X-ray, synchrotron, and neutron radiation. Z. Anorg. Allg. Chem. 623, 1467 (1997) CrossRef H. Jacobs, R. Nymwegen, S. Doyle, T. Wroblewski, W. Kockelmann, Crystalline phosphorus(V) nitride imide, HPN 2 and DPN 2, respectively—structure determination with X-ray, synchrotron, and neutron radiation. Z. Anorg. Allg. Chem. 623, 1467 (1997) CrossRef
39.
go back to reference H. Jacobs, S. Pollok, F. Golinski, Synthesis and crystal structure of Na 10[P 4(NH) 6N 4](NH 2) 6(NH 3) 0.5 with an adamantane-like anion [P 4(NH) 6N 4] 4−. Z. Anorg. Allg. Chem. 620, 1213 (1994) H. Jacobs, S. Pollok, F. Golinski, Synthesis and crystal structure of Na 10[P 4(NH) 6N 4](NH 2) 6(NH 3) 0.5 with an adamantane-like anion [P 4(NH) 6N 4] 4−. Z. Anorg. Allg. Chem. 620, 1213 (1994)
40.
go back to reference F. Golinski, H. Jacobs, Synthesis and crystal structure of Rb 8[P 4N 6(NH) 4](NH 2) 2 with the adamantane-like anion [P 4N 6(NH) 4] 6−. Z. Anorg. Allg. Chem. 621, 29 (1995) CrossRef F. Golinski, H. Jacobs, Synthesis and crystal structure of Rb 8[P 4N 6(NH) 4](NH 2) 2 with the adamantane-like anion [P 4N 6(NH) 4] 6−. Z. Anorg. Allg. Chem. 621, 29 (1995) CrossRef
41.
go back to reference H. Jacobs, F. Golinski, Synthesis and crystal structure of a cesium-tetraimidophosphate-diamide, Cs 5[P(NH) 4](NH 2) 2 = Cs 3[P(NH) 4]·2 CsNH 2. Z. Anorg. Allg. Chem. 620, 531 (1994) CrossRef H. Jacobs, F. Golinski, Synthesis and crystal structure of a cesium-tetraimidophosphate-diamide, Cs 5[P(NH) 4](NH 2) 2 = Cs 3[P(NH) 4]·2 CsNH 2. Z. Anorg. Allg. Chem. 620, 531 (1994) CrossRef
42.
go back to reference M. Mallmann, C. Maak, R. Niklaus, W. Schnick, Ammonothermal synthesis, optical properties and DFT calculations of Mg 2PN 3 and Zn 2PN 3. Chem. Eur. J.  24, 13963 (2018) M. Mallmann, C. Maak, R. Niklaus, W. Schnick, Ammonothermal synthesis, optical properties and DFT calculations of Mg 2PN 3 and Zn 2PN 3. Chem. Eur. J.  24, 13963 (2018)
43.
go back to reference J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Low-temperature crystallization of Eu-doped red-emitting CaAlSiN 3 from alloy-derived ammonometallates. Chem. Mater. 19, 3592 (2007) CrossRef J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Low-temperature crystallization of Eu-doped red-emitting CaAlSiN 3 from alloy-derived ammonometallates. Chem. Mater. 19, 3592 (2007) CrossRef
44.
go back to reference J. Li, T. Watanabe, N. Sakamoto, H. Wada, T. Setoyama, M. Yoshimura, Synthesis of a multinary nitride, Eu-doped CaAlSiN 3, from alloy at low temperatures. Chem. Mater. 20, 2095 (2008) CrossRef J. Li, T. Watanabe, N. Sakamoto, H. Wada, T. Setoyama, M. Yoshimura, Synthesis of a multinary nitride, Eu-doped CaAlSiN 3, from alloy at low temperatures. Chem. Mater. 20, 2095 (2008) CrossRef
45.
go back to reference J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Synthesis of Eu-doped CaAlSiN 3 from ammonometallates: effects of sodium content and pressure. J. Am. Ceram. Soc. 92, 344 (2009) CrossRef J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Synthesis of Eu-doped CaAlSiN 3 from ammonometallates: effects of sodium content and pressure. J. Am. Ceram. Soc. 92, 344 (2009) CrossRef
46.
go back to reference J. Cho, B.K. Bang, S.J. Jeong, C.H. Kim, Synthesis of red-emitting nanocrystalline phosphor CaAlSiN 3:Eu 2+ derived from elementary constituents. RSC Adv. 4, 23218 (2014) CrossRef J. Cho, B.K. Bang, S.J. Jeong, C.H. Kim, Synthesis of red-emitting nanocrystalline phosphor CaAlSiN 3:Eu 2+ derived from elementary constituents. RSC Adv. 4, 23218 (2014) CrossRef
47.
go back to reference K. Nonaka, K. Kishida, C. Izawa, T. Watanabe, Low temperature ammonothermal synthesis of europium-doped SrAlSiN 3 effect of mineralizers. J. Ceram. Soc. Jpn. 122, 17 (2014) CrossRef K. Nonaka, K. Kishida, C. Izawa, T. Watanabe, Low temperature ammonothermal synthesis of europium-doped SrAlSiN 3 effect of mineralizers. J. Ceram. Soc. Jpn. 122, 17 (2014) CrossRef
48.
go back to reference T. Watanabe, K. Nonaka, J. Li, K. Kishida, M. Yoshimura, Low temperature ammonothermal synthesis of europium-doped SrAlSiN 3 for a nitride red phosphor. J. Ceram. Soc. Jpn. 120, 500 (2012) CrossRef T. Watanabe, K. Nonaka, J. Li, K. Kishida, M. Yoshimura, Low temperature ammonothermal synthesis of europium-doped SrAlSiN 3 for a nitride red phosphor. J. Ceram. Soc. Jpn. 120, 500 (2012) CrossRef
49.
go back to reference J. Häusler, L. Neudert, M. Mallmann, R. Niklaus, A.C.L. Kimmel, N.S.A. Alt, E. Schlücker, O. Oeckler, W. Schnick, Ammonothermal synthesis of novel nitrides: case study on CaGaSiN 3. Chem. Eur. J. 23, 2583 (2017) CrossRef J. Häusler, L. Neudert, M. Mallmann, R. Niklaus, A.C.L. Kimmel, N.S.A. Alt, E. Schlücker, O. Oeckler, W. Schnick, Ammonothermal synthesis of novel nitrides: case study on CaGaSiN 3. Chem. Eur. J. 23, 2583 (2017) CrossRef
50.
go back to reference R. Niklaus, J. Minar, J. Häusler, W. Schnick, First-principles and experimental characterization of the electronic properties of CaGaSiN 3 and CaAlSiN 3: the impact of chemical disorder. Phys. Chem. Chem. Phys. 19, 9292 (2017) CrossRef R. Niklaus, J. Minar, J. Häusler, W. Schnick, First-principles and experimental characterization of the electronic properties of CaGaSiN 3 and CaAlSiN 3: the impact of chemical disorder. Phys. Chem. Chem. Phys. 19, 9292 (2017) CrossRef
51.
go back to reference L. Wang, R.-J. Xie, Y. Li, X. Wang, C.-G. Ma, D. Luo, T. Takeda, Y.-T. Tsai, R.-S. Liu, N. Hirosaki, Ca 1−xLi xAl 1−xSi 1+xN 3:Eu 2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes. Light: Sci. Appl. 5, e16155 (2016) L. Wang, R.-J. Xie, Y. Li, X. Wang, C.-G. Ma, D. Luo, T. Takeda, Y.-T. Tsai, R.-S. Liu, N. Hirosaki, Ca 1−xLi xAl 1−xSi 1+xN 3:Eu 2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes. Light: Sci. Appl. 5, e16155 (2016)
52.
go back to reference J. Häusler, L. Eisenburger, O. Oeckler, W. Schnick, Ammonothermal synthesis and crystal structure of the nitridoalumogermanate Ca 1−xLi xAl 1−xGe 1+xN 3 ( x ≈ 0.2). Eur. J. Inorg. Chem. 2018, 759 (2018) J. Häusler, L. Eisenburger, O. Oeckler, W. Schnick, Ammonothermal synthesis and crystal structure of the nitridoalumogermanate Ca 1−xLi xAl 1−xGe 1+xN 3 ( x ≈ 0.2). Eur. J. Inorg. Chem. 2018, 759 (2018)
53.
go back to reference D.R. Modeshia, R.I. Walton, Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem. Soc. Rev. 39, 4303 (2010) CrossRef D.R. Modeshia, R.I. Walton, Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem. Soc. Rev. 39, 4303 (2010) CrossRef
54.
go back to reference T. Watanabe, K. Tajima, J. Li, N. Matsushita, M. Yoshimura, Low-temperature ammonothermal synthesis of LaTaON 2. Chem. Lett. 40, 1101 (2011) CrossRef T. Watanabe, K. Tajima, J. Li, N. Matsushita, M. Yoshimura, Low-temperature ammonothermal synthesis of LaTaON 2. Chem. Lett. 40, 1101 (2011) CrossRef
55.
go back to reference C. Izawa, T. Kobayashi, K. Kishida, T. Watanabe, Ammonothermal synthesis and photocatalytic activity of lower valence cation-doped LaNbON 2. Adv. Mater. Sci. Eng. 2014, 5 (2014) CrossRef C. Izawa, T. Kobayashi, K. Kishida, T. Watanabe, Ammonothermal synthesis and photocatalytic activity of lower valence cation-doped LaNbON 2. Adv. Mater. Sci. Eng. 2014, 5 (2014) CrossRef
56.
go back to reference H. Jacobs, H. Scholze, Investigation of the system Na/La/NH 3. Z. Anorg. Allg. Chem. 427, 8 (1976) CrossRef H. Jacobs, H. Scholze, Investigation of the system Na/La/NH 3. Z. Anorg. Allg. Chem. 427, 8 (1976) CrossRef
57.
go back to reference T. Toshima, K. Kishida, Y. Maruyama, T. Watanabe, Low-temperature synthesis of BaTaO 2N by an ammonothermal method. J. Ceram. Soc. Jpn. 125, 643 (2017) CrossRef T. Toshima, K. Kishida, Y. Maruyama, T. Watanabe, Low-temperature synthesis of BaTaO 2N by an ammonothermal method. J. Ceram. Soc. Jpn. 125, 643 (2017) CrossRef
58.
go back to reference K. Ueda, T. Minegishi, J. Clune, M. Nakabayashi, T. Hisatomi, H. Nishiyama, M. Katayama, N. Shibata, J. Kubota, T. Yamada, K. Domen, Photoelectrochemical oxidation of water using BaTaO 2N photoanodes prepared by particle transfer method. J. Am. Chem. Soc. 137, 2227 (2015) CrossRef K. Ueda, T. Minegishi, J. Clune, M. Nakabayashi, T. Hisatomi, H. Nishiyama, M. Katayama, N. Shibata, J. Kubota, T. Yamada, K. Domen, Photoelectrochemical oxidation of water using BaTaO 2N photoanodes prepared by particle transfer method. J. Am. Chem. Soc. 137, 2227 (2015) CrossRef
59.
go back to reference J. Jander, H. Spandau, C.C. Addison, Anorganische und allgemeine Chemie in flüssigem Ammoniak (Friedr. Vieweg & Sohn, Braunschweig, 1966) J. Jander, H. Spandau, C.C. Addison, Anorganische und allgemeine Chemie in flüssigem Ammoniak (Friedr. Vieweg & Sohn, Braunschweig, 1966)
60.
go back to reference N. Cordes, T. Bräuniger, W. Schnick, Ammonothermal synthesis of EAMO 2N ( EA = Sr, Ba; M = Nb, Ta) Perovskites and 14N solid-state NMR investigations of AM(O,N) 3 ( A = Ca, Sr, Ba, La). Eur. J. Inorg. Chem.  2018, 5019 (2018) N. Cordes, T. Bräuniger, W. Schnick, Ammonothermal synthesis of EAMO 2N ( EA = Sr, Ba; M = Nb, Ta) Perovskites and 14N solid-state NMR investigations of AM(O,N) 3 ( A = Ca, Sr, Ba, La). Eur. J. Inorg. Chem.  2018, 5019 (2018)
61.
go back to reference R. Dwilinski, J.M. Baranowski, M. Kaminska, R. Doradzinski, J. Garczynski, L. Sierzputowski, On GaN crystallization by ammonothermal method. Acta Phys. Pol. A 90, 763 (1996) R. Dwilinski, J.M. Baranowski, M. Kaminska, R. Doradzinski, J. Garczynski, L. Sierzputowski, On GaN crystallization by ammonothermal method. Acta Phys. Pol. A 90, 763 (1996)
62.
go back to reference A. Leineweber, H. Jacobs, S. Hull, Ordering of nitrogen in nickel nitride Ni 3N determined by neutron diffraction. Inorg. Chem. 40, 5818 (2001) CrossRef A. Leineweber, H. Jacobs, S. Hull, Ordering of nitrogen in nickel nitride Ni 3N determined by neutron diffraction. Inorg. Chem. 40, 5818 (2001) CrossRef
63.
go back to reference Y. Maruyama, T. Watanabe, Low-temperature synthesis of CaAlSiN 3:Ce 3+ using the ammonothermal method. J. Ceram. Soc. Jpn. 124, 66 (2016) CrossRef Y. Maruyama, T. Watanabe, Low-temperature synthesis of CaAlSiN 3:Ce 3+ using the ammonothermal method. J. Ceram. Soc. Jpn. 124, 66 (2016) CrossRef
64.
go back to reference Y. Maruyama, Y. Yanase, T. Watanabe, Ammonothermal synthesis of charge-compensated SrAlSiN 3:Ce 3+ phosphor. J. Ceram. Soc. Jpn. 125, 399 (2017) CrossRef Y. Maruyama, Y. Yanase, T. Watanabe, Ammonothermal synthesis of charge-compensated SrAlSiN 3:Ce 3+ phosphor. J. Ceram. Soc. Jpn. 125, 399 (2017) CrossRef
65.
go back to reference A.D. Martinez, A.N. Fioretti, E.S. Toberer, A.C. Tamboli, Synthesis, structure, and optoelectronic properties of II-IV-V 2 materials. J. Mater. Chem. A 5, 11418 (2017) CrossRef A.D. Martinez, A.N. Fioretti, E.S. Toberer, A.C. Tamboli, Synthesis, structure, and optoelectronic properties of II-IV-V 2 materials. J. Mater. Chem. A 5, 11418 (2017) CrossRef
66.
go back to reference T.R. Paudel, W.R.L. Lambrecht, First-principles calculations of elasticity, polarization-related properties, and nonlinear optical coefficients in Zn-IV-N 2 compounds. Phys. Rev. B 79, 245205 (2009) CrossRef T.R. Paudel, W.R.L. Lambrecht, First-principles calculations of elasticity, polarization-related properties, and nonlinear optical coefficients in Zn-IV-N 2 compounds. Phys. Rev. B 79, 245205 (2009) CrossRef
67.
go back to reference M. Ahmed, G. Xinxin, A review of metal oxynitrides for photocatalysis. Inorg. Chem. Front. 3, 578 (2016) CrossRef M. Ahmed, G. Xinxin, A review of metal oxynitrides for photocatalysis. Inorg. Chem. Front. 3, 578 (2016) CrossRef
68.
go back to reference M.R. Amin, T. de Boer, P. Becker, J. Hertrampf, R. Niewa, A. Moewes, Bandgap and electronic structure determination of oxygen-containing ammonothermal InN: experiment and theory. J. Phys. Chem. C 123, 8943 (2019) M.R. Amin, T. de Boer, P. Becker, J. Hertrampf, R. Niewa, A. Moewes, Bandgap and electronic structure determination of oxygen-containing ammonothermal InN: experiment and theory. J. Phys. Chem. C 123, 8943 (2019)
69.
go back to reference N. Cordes, M. Nentwig, L. Eisenburger, O. Oeckler, W. Schnick, Ammonothermal synthesis of the mixed-valence nitrogen-rich europium tantalum ruddlesden-popper phase Eu IIEu III 2Ta 2N 4O 3. Eur. J. Inorg. Chem. 2019, 2304 (2019) N. Cordes, M. Nentwig, L. Eisenburger, O. Oeckler, W. Schnick, Ammonothermal synthesis of the mixed-valence nitrogen-rich europium tantalum ruddlesden-popper phase Eu IIEu III 2Ta 2N 4O 3. Eur. J. Inorg. Chem. 2019, 2304 (2019)
Metadata
Title
Explorative Synthesis of Novel Nitride Compounds by Ammonothermal Synthesis
Authors
Mathias Mallmann
Niklas Cordes
Wolfgang Schnick
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-56305-9_12