Skip to main content
Top

2022 | OriginalPaper | Chapter

Exploring Explainable AI in the Financial Sector: Perspectives of Banks and Supervisory Authorities

Authors : Ouren Kuiper, Martin van den Berg, Joost van der Burgt, Stefan Leijnen

Published in: Artificial Intelligence and Machine Learning

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Explainable artificial intelligence (xAI) is seen as a solution to making AI systems less of a “black box”. It is essential to ensure transparency, fairness, and accountability – which are especially paramount in the financial sector. The aim of this study was a preliminary investigation of the perspectives of supervisory authorities and regulated entities regarding the application of xAI in the financial sector. Three use cases (consumer credit, credit risk, and anti-money laundering) were examined using semi-structured interviews at three banks and two supervisory authorities in the Netherlands. We found that for the investigated use cases a disparity exists between supervisory authorities and banks regarding the desired scope of explainability of AI systems. We argue that the financial sector could benefit from clear differentiation between technical AI (model) explainability requirements and explainability requirements of the broader AI system in relation to applicable laws and regulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Schwab, K.: The Fourth Industrial Revolution, Random House LCC US (2017) Schwab, K.: The Fourth Industrial Revolution, Random House LCC US (2017)
3.
go back to reference Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020) Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)
4.
go back to reference Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B.: Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. 116(44), pp. 22071–22080 (2019) Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B.: Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. 116(44), pp. 22071–22080 (2019)
6.
go back to reference Van der Cruijsen, C., De Haan, J., Roerink, R.: Financial Knowledge and Trust in Financial Institutions, Netherlands Central Bank, Research Department (2019) Van der Cruijsen, C., De Haan, J., Roerink, R.: Financial Knowledge and Trust in Financial Institutions, Netherlands Central Bank, Research Department (2019)
7.
go back to reference Giudici, P., Hochreiter, R., Osterrieder, J., Papenbrock, J., Schwendner, P.: AI and financial technology. Front. Artif. Intell. 2, 25 (2019)CrossRef Giudici, P., Hochreiter, R., Osterrieder, J., Papenbrock, J., Schwendner, P.: AI and financial technology. Front. Artif. Intell. 2, 25 (2019)CrossRef
8.
go back to reference Bauer, K., Hinz, O., Van der Aalst, W., Weinhardt, C.: Expl(AI)n it to me–explainable ai and information systems research. Bus. Inf. Syst. Eng. 63(2) (2021) Bauer, K., Hinz, O., Van der Aalst, W., Weinhardt, C.: Expl(AI)n it to me–explainable ai and information systems research. Bus. Inf. Syst. Eng. 63(2) (2021)
9.
go back to reference Miller, T.: Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 267, 1–38 (2019)MathSciNetCrossRef Miller, T.: Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 267, 1–38 (2019)MathSciNetCrossRef
13.
go back to reference Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence. IEEE Access 6, 52138–52160 (2018)CrossRef Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence. IEEE Access 6, 52138–52160 (2018)CrossRef
14.
go back to reference Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 1–42 (2018)CrossRef Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 1–42 (2018)CrossRef
16.
go back to reference McWaters, R., Blake, M., Galaski, R.: Navigating uncharted waters: a roadmap to responsible innovation with AI in financial services. Part of the Future of Financial Services Series. World Economic Forum (2019) McWaters, R., Blake, M., Galaski, R.: Navigating uncharted waters: a roadmap to responsible innovation with AI in financial services. Part of the Future of Financial Services Series. World Economic Forum (2019)
18.
go back to reference Xie, N., Ras, G., Van Gerven, M., Doran, D.: Explainable deep learning: a field guide for the uninitiated. arXiv Preprint arXiv:2004.14545 (2020) Xie, N., Ras, G., Van Gerven, M., Doran, D.: Explainable deep learning: a field guide for the uninitiated. arXiv Preprint arXiv:​2004.​14545 (2020)
19.
go back to reference Lipton, Z.C.: The mythos of model Interpretability: in machine learning, the concept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)CrossRef Lipton, Z.C.: The mythos of model Interpretability: in machine learning, the concept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)CrossRef
22.
go back to reference Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016) Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)
23.
go back to reference Gerlings, J., Shollo, A., Constantiou, I.: Reviewing the need for explainable artificial intelligence (xAI). In: Proceedings of the 54th Hawaii International Conference on System Sciences, pp. 1284–1293 (2021) Gerlings, J., Shollo, A., Constantiou, I.: Reviewing the need for explainable artificial intelligence (xAI). In: Proceedings of the 54th Hawaii International Conference on System Sciences, pp. 1284–1293 (2021)
24.
go back to reference Confalonieri, R., Coba, L., Wagner, B., Besold, T.R.: A historical perspective of explainable artificial intelligence. Wiley Interdiscipl. Rev. Data Min. Knowl. Discov. 11(1), e1391 (2021) Confalonieri, R., Coba, L., Wagner, B., Besold, T.R.: A historical perspective of explainable artificial intelligence. Wiley Interdiscipl. Rev. Data Min. Knowl. Discov. 11(1), e1391 (2021)
25.
go back to reference Xu, W.: Toward human-centered AI: a perspective from human-computer interaction. Interactions 26(4), 42–46 (2019)CrossRef Xu, W.: Toward human-centered AI: a perspective from human-computer interaction. Interactions 26(4), 42–46 (2019)CrossRef
26.
go back to reference Mueller, S.T., Hoffman, R.R., Clancey, W., Emrey, A., Klein, G.: Explanation in human-AI systems: a literature meta-review, synopsis of key ideas and publications, and bibliography for explainable AI. arXiv preprint arXiv:1902.01876 (2019) Mueller, S.T., Hoffman, R.R., Clancey, W., Emrey, A., Klein, G.: Explanation in human-AI systems: a literature meta-review, synopsis of key ideas and publications, and bibliography for explainable AI. arXiv preprint arXiv:​1902.​01876 (2019)
27.
go back to reference Zhang, B.Z., Ashta, A., Barton, M.E.: Do FinTech and financial incumbents have different experiences and perspectives on the adoption of artificial intelligence? Strateg. Chang. 30(3), 223–234 (2021)CrossRef Zhang, B.Z., Ashta, A., Barton, M.E.: Do FinTech and financial incumbents have different experiences and perspectives on the adoption of artificial intelligence? Strateg. Chang. 30(3), 223–234 (2021)CrossRef
30.
go back to reference Dwivedi, Y.K., et al.: Artificial Intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 57, 101994 (2019) Dwivedi, Y.K., et al.: Artificial Intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 57, 101994 (2019)
31.
go back to reference Leijnen, S., Aldewereld, H., Van Belkom, R., Bijvank, R., Ossewaarde, R.: An agile framework for trustworthy AI. In: NeHuAI@ ECAI, pp. 75–78 (2020) Leijnen, S., Aldewereld, H., Van Belkom, R., Bijvank, R., Ossewaarde, R.: An agile framework for trustworthy AI. In: NeHuAI@ ECAI, pp. 75–78 (2020)
32.
go back to reference Köhl, M.A., Baum, K., Langer, M., Oster, D., Speith, T., Bohlender, B.: Explainability as a non-functional requirement. In: 2019 IEEE 27th International Requirements Engineering Conference, pp. 363–368 (2019) Köhl, M.A., Baum, K., Langer, M., Oster, D., Speith, T., Bohlender, B.: Explainability as a non-functional requirement. In: 2019 IEEE 27th International Requirements Engineering Conference, pp. 363–368 (2019)
33.
go back to reference Siena, A., Mylopoulos, M., Perini, A., Susi A.: From laws to requirements. In: 2008 Requirements Engineering and Law, pp. 6–10 (2008) Siena, A., Mylopoulos, M., Perini, A., Susi A.: From laws to requirements. In: 2008 Requirements Engineering and Law, pp. 6–10 (2008)
35.
go back to reference Buckley, R.P., Zetzsche, D.A., Arner, D.W., Tang, B.W.: Regulating artificial intelligence in finance: putting the human in the loop. Sydney Law Rev. 43(1), 43–81 (2021) Buckley, R.P., Zetzsche, D.A., Arner, D.W., Tang, B.W.: Regulating artificial intelligence in finance: putting the human in the loop. Sydney Law Rev. 43(1), 43–81 (2021)
36.
go back to reference Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)CrossRef Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)CrossRef
Metadata
Title
Exploring Explainable AI in the Financial Sector: Perspectives of Banks and Supervisory Authorities
Authors
Ouren Kuiper
Martin van den Berg
Joost van der Burgt
Stefan Leijnen
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-93842-0_6

Premium Partner