Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

03-04-2020 | Original Article | Issue 10/2020

International Journal of Machine Learning and Cybernetics 10/2020

Exploring of alternative representations of facial images for face recognition

Journal:
International Journal of Machine Learning and Cybernetics > Issue 10/2020
Authors:
Yongbin Qin, Lilei Sun, Yong Xu
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Description and classification of face images is a significant task of computer vision, machine learning and pattern recognition communities. In the past, researchers have made tremendous efforts in this task. Previous researchers always seek high-resolution face images for better image classification. However, with this paper, we present and demonstrate a new opinion that in some cases the use of alternative representations of facial images are very useful for face recognition and properly reducing the image resolution might be beneficial to better classification of face images. This may be attributed to the deformable property of faces and the fact that the proposed alternative representations can in some extent reduce the within-class difference of facial images. Also, the presented idea appear to be useful for helping people to improve face recognition techniques in real worlds.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 10/2020

International Journal of Machine Learning and Cybernetics 10/2020 Go to the issue