Skip to main content
Top
Published in:

01-02-2025

Exploring optimal pyramid textures using machine learning for high-performance solar cell production

Authors: Denish Hirpara, Paramsinh Zala, Meenakshi Bhaisare, Chandra Mauli Kumar, Mayank Gupta, Manoj Kumar, Brijesh Tripathi

Published in: Journal of Computational Electronics | Issue 1/2025

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The pursuit of increasingly efficient and cost-effective solar energy solutions has driven significant advancements in photovoltaic (PV) technologies over the past decade. Among these innovations, bifacial solar cells, which capture sunlight from both the front and back surfaces, with front surface texturing and rear-side optimization playing crucial roles, present a promising avenue for enhancing efficiency compared to conventional designs. The effectiveness of these cells, however, is largely dependent on the optimization of rear surface properties and the material characteristics employed. This study investigates into the pivotal role of surface texture, particularly on silicon wafers, in shaping key performance metrics such as open-circuit voltage, short-circuit current, fill factor, and overall efficiency. Given the complex interdependencies among these parameters, machine learning (ML) tools, specifically random forest regression models, have been utilized to decode these intricate relationships. The findings underscore the significance of surface texture in modulating reflectance from both the rear and front surfaces, which in turn influences the overall performance of the solar cells. By applying ML models, this research provides an improved understanding of the impact of surface characteristics, thereby offering valuable insights into the optimization of design and material selection for next-generation high-performance solar cells. This ML optimization study indicates that the pyramid structures with a height of 3 μm and a base angle of 62° can significantly reduce reflectance to 9% while maximizing solar cell efficiency to 23.61%, marking a substantial advancement over existing designs. This model achieves 75% accuracy on synthetic test data and 78% on experimental data reinforcing model’s applicability despite typical ML limitations in PV systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhou, J., Su, X., Huang, Q., Zhang, B., Yang, J., Zhao, Y., Hou, G.: Recent advancements in poly-Si/SiOx passivating contacts for high-efficiency silicon solar cells: technology review and perspectives. J. Mater. Chemistry. A 10(38), 20147–20173 (2022)CrossRef Zhou, J., Su, X., Huang, Q., Zhang, B., Yang, J., Zhao, Y., Hou, G.: Recent advancements in poly-Si/SiOx passivating contacts for high-efficiency silicon solar cells: technology review and perspectives. J. Mater. Chemistry. A 10(38), 20147–20173 (2022)CrossRef
2.
go back to reference Kafle, B., Goraya, B.S., Mack, S., Feldmann, F., Nold, S., Rentsch, J.: TOPCon–Technology options for cost efficient industrial manufacturing. Sol. Energy Mater. Sol. Cells 227, 111100 (2021)CrossRef Kafle, B., Goraya, B.S., Mack, S., Feldmann, F., Nold, S., Rentsch, J.: TOPCon–Technology options for cost efficient industrial manufacturing. Sol. Energy Mater. Sol. Cells 227, 111100 (2021)CrossRef
3.
go back to reference Hermle, M., Feldmann, F., Bivour, M., Goldschmidt, J.C., Glunz, S.W.: Passivating contacts and tandem concepts: Approaches for the highest silicon-based solar cell efficiencies. Appl. Phy. Reviews 7, 2 (2020) Hermle, M., Feldmann, F., Bivour, M., Goldschmidt, J.C., Glunz, S.W.: Passivating contacts and tandem concepts: Approaches for the highest silicon-based solar cell efficiencies. Appl. Phy. Reviews 7, 2 (2020)
4.
go back to reference Grant, N.E., Altermatt, P.P., Niewelt, T., Post, R., Kwapil, W., Schubert, M.C., Murphy, J.D.: Gallium-doped silicon for high-efficiency commercial passivated emitter and rear solar cells. Solar RRL 5(4), 2000754 (2021)CrossRef Grant, N.E., Altermatt, P.P., Niewelt, T., Post, R., Kwapil, W., Schubert, M.C., Murphy, J.D.: Gallium-doped silicon for high-efficiency commercial passivated emitter and rear solar cells. Solar RRL 5(4), 2000754 (2021)CrossRef
5.
go back to reference Zhao, Y., Procel, P., Han, C., Cao, L., Yang, G., Ozkol, E., Alcaniz, A., Kovacevic, K., Limodio, G., Santbergen, R., Smets, A.: Strategies for realizing high-efficiency silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 258, 112413 (2023)CrossRef Zhao, Y., Procel, P., Han, C., Cao, L., Yang, G., Ozkol, E., Alcaniz, A., Kovacevic, K., Limodio, G., Santbergen, R., Smets, A.: Strategies for realizing high-efficiency silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 258, 112413 (2023)CrossRef
6.
go back to reference Ayala Pelaez, S. (2019). Bifacial solar panel system design, modelling, and performance. Ph. D. Thesis. Ayala Pelaez, S. (2019). Bifacial solar panel system design, modelling, and performance. Ph. D. Thesis.
7.
go back to reference Cho, E. (2017). Fabrication and Modelling of High Efficiency and Stabilized P-type Passivated Emitter Rear Silicon Solar Cells (PERC) (Doctoral dissertation, Georgia Institute of Technology). Cho, E. (2017). Fabrication and Modelling of High Efficiency and Stabilized P-type Passivated Emitter Rear Silicon Solar Cells (PERC) (Doctoral dissertation, Georgia Institute of Technology).
8.
go back to reference Bouffaron, R., Escoubas, L., Simon, J.J., Torchio, P., Flory, F., Berginc, G., Masclet, P.: Enhanced antireflecting properties of micro-structured top-flat pyramids. Opt. Express 16(23), 19304–19309 (2008)CrossRef Bouffaron, R., Escoubas, L., Simon, J.J., Torchio, P., Flory, F., Berginc, G., Masclet, P.: Enhanced antireflecting properties of micro-structured top-flat pyramids. Opt. Express 16(23), 19304–19309 (2008)CrossRef
9.
go back to reference Wang, J., Zhong, F., Liu, H., Zhao, L., Wang, W., Xu, X., Zhang, Y., Yan, H.: Influence of the textured pyramid size on the performance of silicon heterojunction solar cell. Sol. Energy 221, 114–119 (2021)CrossRefMATH Wang, J., Zhong, F., Liu, H., Zhao, L., Wang, W., Xu, X., Zhang, Y., Yan, H.: Influence of the textured pyramid size on the performance of silicon heterojunction solar cell. Sol. Energy 221, 114–119 (2021)CrossRefMATH
10.
go back to reference Alasfour, A., Zhengshan, J.Y., Weigand, W., Quispe, D., Holman, Z.C.: Sub-micrometer random-pyramid texturing of silicon solar wafers with excellent surface passivation and low reflectance. Sol. Energy Mater. Sol. Cells 218, 110761 (2020)CrossRef Alasfour, A., Zhengshan, J.Y., Weigand, W., Quispe, D., Holman, Z.C.: Sub-micrometer random-pyramid texturing of silicon solar wafers with excellent surface passivation and low reflectance. Sol. Energy Mater. Sol. Cells 218, 110761 (2020)CrossRef
12.
go back to reference Buratti, Y., Eijkens, C., Hameiri, Z.: Optimization of solar cell production lines using neural networks and genetic algorithms. ACS Appl. Energy Mater. 3(11), 10317–10322 (2020)CrossRefMATH Buratti, Y., Eijkens, C., Hameiri, Z.: Optimization of solar cell production lines using neural networks and genetic algorithms. ACS Appl. Energy Mater. 3(11), 10317–10322 (2020)CrossRefMATH
13.
go back to reference Su, B., Chen, H., Chen, P., Bian, G., Liu, K., Liu, W.: Deep learning-based solar-cell manufacturing defect detection with complementary attention network. IEEE Trans. Industr. Inf. 17(6), 4084–4095 (2020)CrossRefMATH Su, B., Chen, H., Chen, P., Bian, G., Liu, K., Liu, W.: Deep learning-based solar-cell manufacturing defect detection with complementary attention network. IEEE Trans. Industr. Inf. 17(6), 4084–4095 (2020)CrossRefMATH
14.
go back to reference Han, H., Gao, C., Zhao, Y., Liao, S., Tang, L., Li, X.: Polycrystalline silicon wafer defect segmentation based on deep convolutional neural networks. Pattern Recogn. Lett. 130, 234–241 (2020)CrossRef Han, H., Gao, C., Zhao, Y., Liao, S., Tang, L., Li, X.: Polycrystalline silicon wafer defect segmentation based on deep convolutional neural networks. Pattern Recogn. Lett. 130, 234–241 (2020)CrossRef
15.
go back to reference Ghenai, C., Ahmad, F.F., Rejeb, O., Bettayeb, M.: Artificial neural networks for power output forecasting from bifacial solar PV system with enhanced building roof surface Albedo. J. Build. Eng. 56, 104799 (2022)CrossRef Ghenai, C., Ahmad, F.F., Rejeb, O., Bettayeb, M.: Artificial neural networks for power output forecasting from bifacial solar PV system with enhanced building roof surface Albedo. J. Build. Eng. 56, 104799 (2022)CrossRef
16.
go back to reference Phimu, K., Singh, K. J., & Dhar, R. S. (2021, October). Efficient Optimization Technique for Analysing the Performance of Bifacial Solar Cells Using Fuzzy Logic. In International Conference on Computational Techniques and Applications (pp. 263–272). Singapore: Springer Nature Singapore. Phimu, K., Singh, K. J., & Dhar, R. S. (2021, October). Efficient Optimization Technique for Analysing the Performance of Bifacial Solar Cells Using Fuzzy Logic. In International Conference on Computational Techniques and Applications (pp. 263–272). Singapore: Springer Nature Singapore.
17.
go back to reference Tsuchida, S., Nonaka, H., Yamada, N.: Deep Reinforcement Learning for the Optimal Angle Control of Tracking Bifacial Photovoltaic Systems. Energies 15(21), 8083 (2022)CrossRefMATH Tsuchida, S., Nonaka, H., Yamada, N.: Deep Reinforcement Learning for the Optimal Angle Control of Tracking Bifacial Photovoltaic Systems. Energies 15(21), 8083 (2022)CrossRefMATH
18.
go back to reference Yunqiao, L., Yan, F.: An innovative power prediction method for bifacial PV modules. Electr. Eng. 105(4), 2151–2159 (2023)CrossRefMATH Yunqiao, L., Yan, F.: An innovative power prediction method for bifacial PV modules. Electr. Eng. 105(4), 2151–2159 (2023)CrossRefMATH
19.
go back to reference Peyronnet, R., Fischer, G., Blevin, T., Johnson, E.V., Drahi, E., Lemiti, M.: Texturing optimization for bifacial n-PERT: are pyramids and/or black silicon the way to go for thinner devices? Energy Procedia 124, 250–259 (2017)CrossRef Peyronnet, R., Fischer, G., Blevin, T., Johnson, E.V., Drahi, E., Lemiti, M.: Texturing optimization for bifacial n-PERT: are pyramids and/or black silicon the way to go for thinner devices? Energy Procedia 124, 250–259 (2017)CrossRef
20.
go back to reference Huo, C., Fu, H., & Peng, K. Q. (2024). Inverted pyramid structures fabricated on a monocrystalline silicon surface with a NaOH solution. Helion, 10(1). Huo, C., Fu, H., & Peng, K. Q. (2024). Inverted pyramid structures fabricated on a monocrystalline silicon surface with a NaOH solution. Helion, 10(1).
21.
go back to reference Wu, J., Liu, Y., Chen, W., Zhao, Y., Chen, Q., Tang, H., Wang, Y., Du, X.: Influence of different-sized inverted pyramids of silicon texture by Ag manipulation on solar cell performance. Appl. Surf. Sci. 506, 144778 (2020)CrossRef Wu, J., Liu, Y., Chen, W., Zhao, Y., Chen, Q., Tang, H., Wang, Y., Du, X.: Influence of different-sized inverted pyramids of silicon texture by Ag manipulation on solar cell performance. Appl. Surf. Sci. 506, 144778 (2020)CrossRef
22.
go back to reference Tang, H.B., Ma, S., Lv, Y., Li, Z.P., Shen, W.Z.: Optimization of rear surface roughness and metal grid design in industrial bifacial PERC solar cells. Sol. Energy Mater. Sol. Cells 216, 110712 (2020)CrossRef Tang, H.B., Ma, S., Lv, Y., Li, Z.P., Shen, W.Z.: Optimization of rear surface roughness and metal grid design in industrial bifacial PERC solar cells. Sol. Energy Mater. Sol. Cells 216, 110712 (2020)CrossRef
23.
go back to reference Xu, Y., Zhang, J., Xuan, Y., Wang, J., Meng, F.: Synergetic or colliding effects on the solar-electric conversion efficiency from light-trapping structured surfaces: Coupling optical-electrical features of bifacial solar cells. Sol. Energy 207, 517–527 (2020)CrossRef Xu, Y., Zhang, J., Xuan, Y., Wang, J., Meng, F.: Synergetic or colliding effects on the solar-electric conversion efficiency from light-trapping structured surfaces: Coupling optical-electrical features of bifacial solar cells. Sol. Energy 207, 517–527 (2020)CrossRef
24.
go back to reference Hussein, R., Schmidt, J., Barros, T., Marques, M.A., Botti, S.: Machine-learning correction to density-functional crystal structure optimization. MRS Bull. 47(8), 765–771 (2022)CrossRef Hussein, R., Schmidt, J., Barros, T., Marques, M.A., Botti, S.: Machine-learning correction to density-functional crystal structure optimization. MRS Bull. 47(8), 765–771 (2022)CrossRef
25.
go back to reference Rodriguez, J., Wang, E.C., Chen, N., Ho, J.W., Li, M., Buatis, J.K., Nagarajan, B., Xu, L., Choy, W.L., Shanmugam, V., Wong, J., Aberle, A.G., Duttagupta, S.: Towards 22% efficient screen-printed bifacial n-type silicon solar cells. Sol. Energy Mater. Sol. Cells 187, 91–96 (2018)CrossRef Rodriguez, J., Wang, E.C., Chen, N., Ho, J.W., Li, M., Buatis, J.K., Nagarajan, B., Xu, L., Choy, W.L., Shanmugam, V., Wong, J., Aberle, A.G., Duttagupta, S.: Towards 22% efficient screen-printed bifacial n-type silicon solar cells. Sol. Energy Mater. Sol. Cells 187, 91–96 (2018)CrossRef
26.
go back to reference Al-Husseini, A.M., Lahlouh, B.: Influence of pyramid size on the reflectivity of silicon surfaces textured using an alkaline etchant. Bull. Mater. Sci. 42(4), 152 (2019)CrossRef Al-Husseini, A.M., Lahlouh, B.: Influence of pyramid size on the reflectivity of silicon surfaces textured using an alkaline etchant. Bull. Mater. Sci. 42(4), 152 (2019)CrossRef
27.
go back to reference Zhou, J., Tan, Y., Liu, W., Cai, X., Huang, H., Cao, Y.: Effect of front surface light trapping structures on the PERC solar cell. SN Appl. Sci. 2, 1–10 (2020)CrossRefMATH Zhou, J., Tan, Y., Liu, W., Cai, X., Huang, H., Cao, Y.: Effect of front surface light trapping structures on the PERC solar cell. SN Appl. Sci. 2, 1–10 (2020)CrossRefMATH
28.
go back to reference Mohammadi, M.H., Fathi, D., Eskandari, M.: Light trapping in perovskite solar cells with plasmonic core/shell nanorod array: A numerical study. Energy Rep. 7, 1404–1415 (2021)CrossRefMATH Mohammadi, M.H., Fathi, D., Eskandari, M.: Light trapping in perovskite solar cells with plasmonic core/shell nanorod array: A numerical study. Energy Rep. 7, 1404–1415 (2021)CrossRefMATH
29.
go back to reference Basore, P. A., & Clugston, D. A. (1996, May). PC1D version 4 for Windows: from analysis to design. In Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference-1996 (pp. 377–381). IEEE. Basore, P. A., & Clugston, D. A. (1996, May). PC1D version 4 for Windows: from analysis to design. In Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference-1996 (pp. 377–381). IEEE.
30.
go back to reference Yang, S., Ge, P., Zhang, L.: The effects of different parameters of pyramidal textured silicon surface on the optical reflectance. Sol. Energy 134, 392–398 (2016)CrossRefMATH Yang, S., Ge, P., Zhang, L.: The effects of different parameters of pyramidal textured silicon surface on the optical reflectance. Sol. Energy 134, 392–398 (2016)CrossRefMATH
31.
go back to reference Sai, H., Kanamori, Y., Arafune, K., Ohshita, Y., Yamaguchi, M.: Light trapping effect of submicron surface textures in crystalline Si solar cells. Prog. Photovoltaics Res. Appl. 15(5), 415–423 (2007)CrossRef Sai, H., Kanamori, Y., Arafune, K., Ohshita, Y., Yamaguchi, M.: Light trapping effect of submicron surface textures in crystalline Si solar cells. Prog. Photovoltaics Res. Appl. 15(5), 415–423 (2007)CrossRef
32.
go back to reference Basu, P.K., Khanna, A., Hameiri, Z.: The effect of front pyramid heights on the efficiency of homogeneously textured inline-diffused screen-printed monocrystalline silicon wafer solar cells. Renewable Energy 78, 590–598 (2015)CrossRefMATH Basu, P.K., Khanna, A., Hameiri, Z.: The effect of front pyramid heights on the efficiency of homogeneously textured inline-diffused screen-printed monocrystalline silicon wafer solar cells. Renewable Energy 78, 590–598 (2015)CrossRefMATH
33.
go back to reference Ximello Quiebras, J. N., Dastgheib-Shirazi, A., Scholz, S., & Hahn, G. (2010). Influence of pyramid size of chemically textured silicon wafers on the characteristics of industrial solar cells, 25th EU PVSEC, 6 - 10 September 2010, Valencia (pre-print), Ximello Quiebras, J. N., Dastgheib-Shirazi, A., Scholz, S., & Hahn, G. (2010). Influence of pyramid size of chemically textured silicon wafers on the characteristics of industrial solar cells, 25th EU PVSEC, 6 - 10 September 2010, Valencia (pre-print),
34.
go back to reference Bouffaron, R., Escoubas, L., Simon, J.J., Torchio, P., Flory, F., Berginc, G., Masclet, P.: Enhanced antireflecting properties of microstructured top-flat pyramids. Opt. Express 16(23), 19304–19309 (2008)CrossRef Bouffaron, R., Escoubas, L., Simon, J.J., Torchio, P., Flory, F., Berginc, G., Masclet, P.: Enhanced antireflecting properties of microstructured top-flat pyramids. Opt. Express 16(23), 19304–19309 (2008)CrossRef
35.
go back to reference Iranzad, R., & Liu, X. (2024). A review of random forest-based feature selection methods for data science education and applications. International Journal of Data Science and Analytics 1–15 Iranzad, R., & Liu, X. (2024). A review of random forest-based feature selection methods for data science education and applications. International Journal of Data Science and Analytics 1–15
36.
go back to reference Zhi, C., Wang, S., Sun, S., Li, C., Li, Z., Wan, Z., Wang, H., Li, Z., Liu, Z.: Machine-learning-assisted screening of interface passivation materials for perovskite solar cells. ACS Energy Lett. 8(3), 1424–1433 (2023)CrossRefMATH Zhi, C., Wang, S., Sun, S., Li, C., Li, Z., Wan, Z., Wang, H., Li, Z., Liu, Z.: Machine-learning-assisted screening of interface passivation materials for perovskite solar cells. ACS Energy Lett. 8(3), 1424–1433 (2023)CrossRefMATH
38.
go back to reference Jaiswal, R. (2023). Machine learning based prediction models for silicon heterojunction solar cell optimization (Doctoral dissertation, The University of New Mexico). Jaiswal, R. (2023). Machine learning based prediction models for silicon heterojunction solar cell optimization (Doctoral dissertation, The University of New Mexico).
39.
go back to reference Li, Y., Sai, H., McDonald, C., Xu, Z., Kurokawa, Y., Usami, N., Matsui, T.: Nanoscale Size Control of Si Pyramid Texture for Perovskite/Si Tandem Solar Cells Enabling Solution-Based Perovskite Top-Cell Fabrication and Improved Si Bottom-Cell Response. Adv. Mater. Interfaces 10(35), 2300504 (2023)CrossRef Li, Y., Sai, H., McDonald, C., Xu, Z., Kurokawa, Y., Usami, N., Matsui, T.: Nanoscale Size Control of Si Pyramid Texture for Perovskite/Si Tandem Solar Cells Enabling Solution-Based Perovskite Top-Cell Fabrication and Improved Si Bottom-Cell Response. Adv. Mater. Interfaces 10(35), 2300504 (2023)CrossRef
40.
go back to reference Singh, L. (2023). Improving Light Absorption in Solar Cells by Introducing Surface Texture (Master’s thesis, Texas A&M University-Kingsville). Singh, L. (2023). Improving Light Absorption in Solar Cells by Introducing Surface Texture (Master’s thesis, Texas A&M University-Kingsville).
41.
go back to reference Han, S., Chu, M., Pham, D.P., Dhungel, S.K., Yi, J.: Comparison of different approaches to texturing monocrystalline silicon wafers for solar cell applications. Surf. Sci. 748, 122540 (2024)CrossRef Han, S., Chu, M., Pham, D.P., Dhungel, S.K., Yi, J.: Comparison of different approaches to texturing monocrystalline silicon wafers for solar cell applications. Surf. Sci. 748, 122540 (2024)CrossRef
42.
go back to reference Kim, M.S., Lee, J.H., Kwak, M.K.: Surface texturing methods for solar cell efficiency enhancement. Int. J. Precis. Eng. Manuf. 21(7), 1389–1398 (2020)CrossRefMATH Kim, M.S., Lee, J.H., Kwak, M.K.: Surface texturing methods for solar cell efficiency enhancement. Int. J. Precis. Eng. Manuf. 21(7), 1389–1398 (2020)CrossRefMATH
43.
go back to reference Hauser, H., Michl, B., Schwarzkopf, S., Kübler, V., Müller, C., Hermle, M., Bläsi, B.: Honeycomb texturing of silicon via nanoimprint lithography for solar cell applications. IEEE J.Photovoltaics 2(2), 114–122 (2012)CrossRef Hauser, H., Michl, B., Schwarzkopf, S., Kübler, V., Müller, C., Hermle, M., Bläsi, B.: Honeycomb texturing of silicon via nanoimprint lithography for solar cell applications. IEEE J.Photovoltaics 2(2), 114–122 (2012)CrossRef
Metadata
Title
Exploring optimal pyramid textures using machine learning for high-performance solar cell production
Authors
Denish Hirpara
Paramsinh Zala
Meenakshi Bhaisare
Chandra Mauli Kumar
Mayank Gupta
Manoj Kumar
Brijesh Tripathi
Publication date
01-02-2025
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2025
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02265-3