Skip to main content
Top

2021 | OriginalPaper | Chapter

Exploring the Contributions of Low-Light Image Enhancement to Network-Based Object Detection

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Low-light is a challenging environment for both human and computer vision to perform tasks such as object classification and detection. Recent works have shown potential in employing enhancements algorithms to support and improve such tasks in low-light, however there has not been any focused analysis to understand the direct effects that low-light enhancement have on an object detector. This work aims to quantify and visualize such effects on the multi-level abstractions involved in network-based object detection. First, low-light image enhancement algorithms are employed to enhance real low-light images, and then followed by deploying an object detection network on the low-light as well as the enhanced counterparts. A comparison of the activations in different layers, representing the detection features, are used to generate statistics in order to quantify the enhancements’ contribution to detection. Finally, this framework was used to analyze several low-light image enhancement algorithms and identify their impact on the detection model and task. This framework can also be easily generalized to any convolutional neural network-based models for the analysis of different enhancements algorithms and tasks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Akbarinia, A., Gil-Rodríguez, R.: Deciphering image contrast in object classification deep networks. Vision Res. 173, 61–76 (2020)CrossRef Akbarinia, A., Gil-Rodríguez, R.: Deciphering image contrast in object classification deep networks. Vision Res. 173, 61–76 (2020)CrossRef
3.
go back to reference Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847. IEEE (2018) Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847. IEEE (2018)
4.
go back to reference Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. In: British Machine Vision Conference (BMVC) (2018) Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. In: British Machine Vision Conference (BMVC) (2018)
5.
go back to reference Fu, X., Zeng, D., Huang, Y., Liao, Y., Ding, X., Paisley, J.: A fusion-based enhancing method for weakly illuminated images. Signal Process. 129, 82–96 (2016)CrossRef Fu, X., Zeng, D., Huang, Y., Liao, Y., Ding, X., Paisley, J.: A fusion-based enhancing method for weakly illuminated images. Signal Process. 129, 82–96 (2016)CrossRef
6.
go back to reference Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (cvpr), pp. 2782–2790 (2016) Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (cvpr), pp. 2782–2790 (2016)
7.
go back to reference Girshick, R.: Fast r-cnn. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015) Girshick, R.: Fast r-cnn. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015)
8.
go back to reference Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)MathSciNetCrossRef Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)MathSciNetCrossRef
9.
go back to reference Li, L., Wang, R., Wang, W., Gao, W.: A low-light image enhancement method for both denoising and contrast enlarging. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3730–3734. IEEE (2015) Li, L., Wang, R., Wang, W., Gao, W.: A low-light image enhancement method for both denoising and contrast enlarging. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3730–3734. IEEE (2015)
10.
go back to reference Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 27(6), 2828–2841 (2018)MathSciNetCrossRef Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 27(6), 2828–2841 (2018)MathSciNetCrossRef
12.
go back to reference Liu, D., Zhang, H., Xiong, Z.: On the classification-distortion-perception tradeoff. In: Advances in Neural Information Processing Systems (NIPS), pp. 1206–1215 (2019) Liu, D., Zhang, H., Xiong, Z.: On the classification-distortion-perception tradeoff. In: Advances in Neural Information Processing Systems (NIPS), pp. 1206–1215 (2019)
13.
go back to reference Loh, Y.P., Chan, C.S.: Getting to know low-light images with the exclusively dark dataset. Comput. Vis. Image Underst. 178, 30–42 (2019)CrossRef Loh, Y.P., Chan, C.S.: Getting to know low-light images with the exclusively dark dataset. Comput. Vis. Image Underst. 178, 30–42 (2019)CrossRef
14.
go back to reference Loh, Y.P., Liang, X., Chan, C.S.: Low-light image enhancement using gaussian process for features retrieval. Signal Proc. Image Commun. 74, 175–190 (2019)CrossRef Loh, Y.P., Liang, X., Chan, C.S.: Low-light image enhancement using gaussian process for features retrieval. Signal Proc. Image Commun. 74, 175–190 (2019)CrossRef
15.
go back to reference Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision, pp. 618–626 (2017) Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision, pp. 618–626 (2017)
16.
go back to reference Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556 (2014)
17.
go back to reference Tanaka, M., Shibata, T., Okutomi, M.: Gradient-based low-light image enhancement. In: 2019 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–2. IEEE (2019) Tanaka, M., Shibata, T., Okutomi, M.: Gradient-based low-light image enhancement. In: 2019 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–2. IEEE (2019)
18.
go back to reference Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)CrossRef Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)CrossRef
19.
go back to reference Wang, W., Wei, C., Yang, W., Liu, J.: Gladnet: low-light enhancement network with global awareness. In: 2018 IEEE International Conference on Automatic Face & Gesture Recognition (FG), pp. 751–755. IEEE (2018) Wang, W., Wei, C., Yang, W., Liu, J.: Gladnet: low-light enhancement network with global awareness. In: 2018 IEEE International Conference on Automatic Face & Gesture Recognition (FG), pp. 751–755. IEEE (2018)
20.
go back to reference Yang, Q., Jung, C., Fu, Q., Song, H.: Low light image denoising based on poisson noise model and weighted tv regularization. In: 2018 IEEE International Conference on Image Processing (ICIP), pp. 3199–3203. IEEE (2018) Yang, Q., Jung, C., Fu, Q., Song, H.: Low light image denoising based on poisson noise model and weighted tv regularization. In: 2018 IEEE International Conference on Image Processing (ICIP), pp. 3199–3203. IEEE (2018)
Metadata
Title
Exploring the Contributions of Low-Light Image Enhancement to Network-Based Object Detection
Author
Yuen Peng Loh
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-68780-9_50

Premium Partner