Skip to main content
Top
Published in:

31-01-2025

Exploring the electronic and thermoelectric properties of zigzag and armchair edge Irida-Graphene nanoribbons

Authors: Reza Kalami, Seyed Ahmad Ketabi

Published in: Journal of Computational Electronics | Issue 1/2025

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electronic and thermoelectric properties of Irida-Graphene nanoribbons (IGNRs) are significantly influenced by their edge configurations. This article presents a comprehensive computational study of the band structure, density of states (DOS), transmission function, and current–voltage (I-V) characteristics of zigzag and armchair edge IGNRs. Zigzag edge IGNRs (ZIGNRs) exhibit localized edge states, which introduce a Dirac point at the Fermi level, contributing to metallic behavior and enhancing the Seebeck coefficient. In contrast, armchair edge IGNRs (AIGNRs) show semiconducting behavior with a bandgap of approximately 2.4 eV. The thermoelectric performance of ZIGNRs is superior, with a higher Seebeck coefficient and electronic figure of merit (ZTe) compared to AIGNRs. The maximum Seebeck coefficient for ZIGNRs is about 7 μV/K, while for AIGNRs, it is about 1.5 μV/K. The ZTe for ZIGNRs is approximately 0.007, and for AIGNRs, it is about 0.005. These findings provide valuable insights into the design and optimization of IGNRs for advanced thermoelectric and electronic applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, T., Jing, T., Rao, D., Mourdikoudis, S., Zuo, Y., Wang, M.: Two-dimensional materials for electrocatalysis and energy storage applications. Inorg. Chem. Front. 9(23), 6008–6046 (2022)MATH Li, T., Jing, T., Rao, D., Mourdikoudis, S., Zuo, Y., Wang, M.: Two-dimensional materials for electrocatalysis and energy storage applications. Inorg. Chem. Front. 9(23), 6008–6046 (2022)MATH
2.
go back to reference Huang, H., Feng, W., Chen, Y.: Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem. Soc. Rev. 50(20), 11381–11485 (2021)MATH Huang, H., Feng, W., Chen, Y.: Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem. Soc. Rev. 50(20), 11381–11485 (2021)MATH
3.
go back to reference Penev, E.S., Marzari, N., Yakobson, B.I.: Theoretical prediction of two-dimensional materials, behavior, and properties. ACS Nano 15(4), 5959–5976 (2021)MATH Penev, E.S., Marzari, N., Yakobson, B.I.: Theoretical prediction of two-dimensional materials, behavior, and properties. ACS Nano 15(4), 5959–5976 (2021)MATH
4.
go back to reference S. Radhakrishnan, P. P. Das, A. Alam, S. P. Dwivedi, V. Chaudhary, (2024) Mechanical, thermal, and electrical properties of 2D nanomaterials for advanced applications. Proc. Inst. Mech. Eng. Part C 09544062241245018 S. Radhakrishnan, P. P. Das, A. Alam, S. P. Dwivedi, V. Chaudhary, (2024) Mechanical, thermal, and electrical properties of 2D nanomaterials for advanced applications. Proc. Inst. Mech. Eng. Part C 09544062241245018
5.
go back to reference Gueye, M.N.Y., Carella, A., Faure-Vincent, J., Demadrille, R., Simonato, J.P.: Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Prog. Mater. Sci. 108, 100616 (2020) Gueye, M.N.Y., Carella, A., Faure-Vincent, J., Demadrille, R., Simonato, J.P.: Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Prog. Mater. Sci. 108, 100616 (2020)
7.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.E., Zhang, Y., Dubonos, S.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Sci. 306(5696), 666–669 (2004) Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.E., Zhang, Y., Dubonos, S.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Sci. 306(5696), 666–669 (2004)
8.
go back to reference Sharma, B.K.: Graphene: an exotic condensed matter and its impact on technology. Emerg. Mater. Res. 9(3), 564–617 (2020)MATH Sharma, B.K.: Graphene: an exotic condensed matter and its impact on technology. Emerg. Mater. Res. 9(3), 564–617 (2020)MATH
9.
go back to reference Anichini, C., Samorì, P.: Graphene-Based Hybrid Functional Materials. Small 17(33), 2100514 (2021) Anichini, C., Samorì, P.: Graphene-Based Hybrid Functional Materials. Small 17(33), 2100514 (2021)
10.
go back to reference Jana, S., Bandyopadhyay, A., Datta, S., Bhattacharya, D., Jana, D.: Emerging properties of carbon based 2D material beyond graphene. J. Condens. Matter Phys. 34(5), 053001 (2021)MATH Jana, S., Bandyopadhyay, A., Datta, S., Bhattacharya, D., Jana, D.: Emerging properties of carbon based 2D material beyond graphene. J. Condens. Matter Phys. 34(5), 053001 (2021)MATH
11.
go back to reference Iqbal, A.A., Sakib, N., Iqbal, A.P., Nuruzzaman, D.M.: Graphene-based nanocomposites and their fabrication, mechanical properties and applications. Materialia 12, 100815 (2020)MATH Iqbal, A.A., Sakib, N., Iqbal, A.P., Nuruzzaman, D.M.: Graphene-based nanocomposites and their fabrication, mechanical properties and applications. Materialia 12, 100815 (2020)MATH
12.
go back to reference Ibrahim, A., Klopocinska, A., Horvat, K., Abdel Hamid, Z.: Graphene-based nanocomposites: Synthesis, mechanical properties, and characterizations. Polymers 13(17), 2869 (2021) Ibrahim, A., Klopocinska, A., Horvat, K., Abdel Hamid, Z.: Graphene-based nanocomposites: Synthesis, mechanical properties, and characterizations. Polymers 13(17), 2869 (2021)
13.
go back to reference Radsar, T., Khalesi, H., Ghods, V.: Graphene properties and applications in nanoelectronic. Opt. Quantum Electron. 53(4), 178 (2021) Radsar, T., Khalesi, H., Ghods, V.: Graphene properties and applications in nanoelectronic. Opt. Quantum Electron. 53(4), 178 (2021)
14.
go back to reference Nandee, R., Chowdhury, M.A., Shahid, A., Hossain, N., Rana, M.: Band gap formation of 2D materialin graphene: Future prospect and challenges. Results Eng. 15, 100474 (2022) Nandee, R., Chowdhury, M.A., Shahid, A., Hossain, N., Rana, M.: Band gap formation of 2D materialin graphene: Future prospect and challenges. Results Eng. 15, 100474 (2022)
15.
go back to reference Do, T.N., Shih, P.H., Gumbs, G., Huang, D.: Influence of electric and magnetic fields and σ-edge bands on the electronic and optical spectra of graphene nanoribbons. Phys. Rev. B 103(11), 115408 (2021)MATH Do, T.N., Shih, P.H., Gumbs, G., Huang, D.: Influence of electric and magnetic fields and σ-edge bands on the electronic and optical spectra of graphene nanoribbons. Phys. Rev. B 103(11), 115408 (2021)MATH
16.
go back to reference Ajeel, F.N., Mohammed, M.H., Khudhair, A.M.: Energy bandgap engineering of graphene nanoribbon by doping phosphorous impurities to create nano-heterostructures: A DFT study. Phys. E: Low-dimensional Sys. Nanostruct. 105, 105–115 (2019)MATH Ajeel, F.N., Mohammed, M.H., Khudhair, A.M.: Energy bandgap engineering of graphene nanoribbon by doping phosphorous impurities to create nano-heterostructures: A DFT study. Phys. E: Low-dimensional Sys. Nanostruct. 105, 105–115 (2019)MATH
17.
go back to reference Bhatt, M.D., Kim, H., Kim, G.: Various defects in graphene: a review. RSC Adv. 12(33), 21520–21547 (2022)MATH Bhatt, M.D., Kim, H., Kim, G.: Various defects in graphene: a review. RSC Adv. 12(33), 21520–21547 (2022)MATH
18.
go back to reference Luo, H., Yu, G.: Preparation, bandgap engineering, and performance control of graphene nanoribbons. Chem. Mater. 34(8), 3588–3615 (2022)MATH Luo, H., Yu, G.: Preparation, bandgap engineering, and performance control of graphene nanoribbons. Chem. Mater. 34(8), 3588–3615 (2022)MATH
19.
go back to reference Wang, H., Wang, H.S., Ma, C., Chen, L., Jiang, C., Chen, C., Wang, X.: Graphene nanoribbons for quantum electronics. Nat. Rev. Phys. 3(12), 791–802 (2021)MATH Wang, H., Wang, H.S., Ma, C., Chen, L., Jiang, C., Chen, C., Wang, X.: Graphene nanoribbons for quantum electronics. Nat. Rev. Phys. 3(12), 791–802 (2021)MATH
20.
go back to reference Nguyen, T.T.N., de Vries, N., Karakachian, H., Gruschwitz, M., Aprojanz, J., Zakharov, A.A., Tegenkamp, C.: Topological surface state in epitaxial zigzag graphene nanoribbons. Nano Lett. 21(7), 2876–2882 (2021) Nguyen, T.T.N., de Vries, N., Karakachian, H., Gruschwitz, M., Aprojanz, J., Zakharov, A.A., Tegenkamp, C.: Topological surface state in epitaxial zigzag graphene nanoribbons. Nano Lett. 21(7), 2876–2882 (2021)
21.
go back to reference Merino-Díez, N., Garcia-Lekue, A., Carbonell-Sanromà, E., Li, J., Corso, M., Colazzo, L., de Oteyza, D.G.: Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au (111). ACS Nano 11(11), 11661–11668 (2017) Merino-Díez, N., Garcia-Lekue, A., Carbonell-Sanromà, E., Li, J., Corso, M., Colazzo, L., de Oteyza, D.G.: Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au (111). ACS Nano 11(11), 11661–11668 (2017)
22.
go back to reference Wang, S., Yang, B., Chen, H., Ruckenstein, E.: Popgraphene: a new 2D planar carbon allotrope composed of 5–8–5 carbon rings for high-performance lithium-ion battery anodes from bottom-up programming. J. Mater. Chem. A 6(16), 6815–6821 (2018)MATH Wang, S., Yang, B., Chen, H., Ruckenstein, E.: Popgraphene: a new 2D planar carbon allotrope composed of 5–8–5 carbon rings for high-performance lithium-ion battery anodes from bottom-up programming. J. Mater. Chem. A 6(16), 6815–6821 (2018)MATH
23.
go back to reference Wang, Z., Zhou, X.F., Zhang, X., Zhu, Q., Dong, H., Zhao, M., Oganov, A.R.: Phagraphene: a low-energy graphene allotrope composed of 5–6–7 carbon rings with distorted dirac cones. Nano lett. 15(9), 6182–6186 (2015)MATH Wang, Z., Zhou, X.F., Zhang, X., Zhu, Q., Dong, H., Zhao, M., Oganov, A.R.: Phagraphene: a low-energy graphene allotrope composed of 5–6–7 carbon rings with distorted dirac cones. Nano lett. 15(9), 6182–6186 (2015)MATH
24.
go back to reference Nath, S., Bandyopadhyay, A., Datta, S., Uddin, M.M., Jana, D.: Electronic and optical properties of non-hexagonal Dirac material S-graphene sheet and nanoribbons. Physica E Low Dimens. Syst. Nanostruct. 120, 114087 (2020)MATH Nath, S., Bandyopadhyay, A., Datta, S., Uddin, M.M., Jana, D.: Electronic and optical properties of non-hexagonal Dirac material S-graphene sheet and nanoribbons. Physica E Low Dimens. Syst. Nanostruct. 120, 114087 (2020)MATH
25.
go back to reference Xu, L.C., Wang, R.Z., Miao, M.S., Wei, X.L., Chen, Y.P., Yan, H., Ma, Y.M.: Two dimensional Dirac carbon allotropes from graphene. Nanoscale 6(2), 1113–1118 (2014) Xu, L.C., Wang, R.Z., Miao, M.S., Wei, X.L., Chen, Y.P., Yan, H., Ma, Y.M.: Two dimensional Dirac carbon allotropes from graphene. Nanoscale 6(2), 1113–1118 (2014)
26.
go back to reference Liu, Y., Wang, G., Huang, Q., Guo, L., Chen, X.: Structural and Electronic Properties of T Graphene: A Two-Dimensional Carbon Allotrope with Tetrarings. Phys. Rev. Lett. 108(22), 225505 (2012) Liu, Y., Wang, G., Huang, Q., Guo, L., Chen, X.: Structural and Electronic Properties of T Graphene: A Two-Dimensional Carbon Allotrope with Tetrarings. Phys. Rev. Lett. 108(22), 225505 (2012)
27.
go back to reference Dai, C.J., Yan, X.H., Xiao, Y., Guo, Y.D.: Electronic and transport properties of T-graphene nanoribbon: Symmetry-dependent multiple Dirac points, negative differential resistance and linear current-bias characteristics. Europhys. Lett. 107(3), 37004 (2014) Dai, C.J., Yan, X.H., Xiao, Y., Guo, Y.D.: Electronic and transport properties of T-graphene nanoribbon: Symmetry-dependent multiple Dirac points, negative differential resistance and linear current-bias characteristics. Europhys. Lett. 107(3), 37004 (2014)
28.
go back to reference Zhang, S., Zhou, J., Wang, Q., Chen, X., Kawazoe, Y., Jena, P.: Penta-graphene: A new carbon allotrope. Proc. Natl. Acad. Sci. 112(8), 2372–2377 (2015) Zhang, S., Zhou, J., Wang, Q., Chen, X., Kawazoe, Y., Jena, P.: Penta-graphene: A new carbon allotrope. Proc. Natl. Acad. Sci. 112(8), 2372–2377 (2015)
29.
go back to reference Vu, T.T., Tran, V.T.: Tight-binding description for the electronic band structure of penta-graphene. Semicond. Sci. Tech. 35(9), 095037 (2020)MATH Vu, T.T., Tran, V.T.: Tight-binding description for the electronic band structure of penta-graphene. Semicond. Sci. Tech. 35(9), 095037 (2020)MATH
30.
go back to reference Chen, C.P., Liu, C., Liu, L.L., Zhao, L.S., Wang, X.C.: Enhanced thermoelectric properties of penta-graphene by strain effects process. Mater. Res. Express 4(10), 105031 (2017)MATH Chen, C.P., Liu, C., Liu, L.L., Zhao, L.S., Wang, X.C.: Enhanced thermoelectric properties of penta-graphene by strain effects process. Mater. Res. Express 4(10), 105031 (2017)MATH
31.
go back to reference M. M. Uddin, M. H. Kabir, M. A. Ali, M. M. Hossain, M. U. Khandaker, S. Mandal, & Jana, Graphene-like emerging 2D materials: recent progress, challenges and future outlook. RSC Adv. 13(47), 33336–33375 D. M. M. Uddin, M. H. Kabir, M. A. Ali, M. M. Hossain, M. U. Khandaker, S. Mandal, & Jana, Graphene-like emerging 2D materials: recent progress, challenges and future outlook. RSC Adv. 13(47), 33336–33375 D.
32.
go back to reference Khan, K., Tareen, A.K., Aslam, M., Wang, R., Zhang, Y., Mahmood, A., Guo, Z.: Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 8(2), 387–440 (2020) Khan, K., Tareen, A.K., Aslam, M., Wang, R., Zhang, Y., Mahmood, A., Guo, Z.: Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 8(2), 387–440 (2020)
33.
go back to reference M. P. Júnior, W. F. da Cunha, W. F. Giozza, R. T. de Sousa Junior, L. R. Junior, Irida-graphene: A new 2D carbon allotrope. FlatChem 37, 100469 (2023) M. P. Júnior, W. F. da Cunha, W. F. Giozza, R. T. de Sousa Junior, L. R. Junior, Irida-graphene: A new 2D carbon allotrope. FlatChem 37, 100469 (2023)
34.
go back to reference Majidi, R.: Irida-graphyne: A promising material for optoelectronic applications. Mater. Today Commun. 38, 107641 (2024)MATH Majidi, R.: Irida-graphyne: A promising material for optoelectronic applications. Mater. Today Commun. 38, 107641 (2024)MATH
35.
go back to reference Ordejón, P.: Order-N tight-binding methods for electronic-structure and molecular dynamics. Comput. Mater. Sci. 12(3), 157–191 (1998)MATH Ordejón, P.: Order-N tight-binding methods for electronic-structure and molecular dynamics. Comput. Mater. Sci. 12(3), 157–191 (1998)MATH
36.
go back to reference Thakur, A., Sarkar, N.: A tutorial on the NEGF method for electron transport in devices and defective materials. Eur. Phys. J. B. 96(8), 113 (2023)MATH Thakur, A., Sarkar, N.: A tutorial on the NEGF method for electron transport in devices and defective materials. Eur. Phys. J. B. 96(8), 113 (2023)MATH
37.
go back to reference V. T. Tran, J. Saint-Martin, P. Dollfus, S. Volz, Third nearest neighbor parameterized tight binding model for graphene nano-ribbons. AIP Adv. 7(7) (2017) V. T. Tran, J. Saint-Martin, P. Dollfus, S. Volz, Third nearest neighbor parameterized tight binding model for graphene nano-ribbons. AIP Adv. 7(7) (2017)
38.
go back to reference Ribeiro, R.M., Pereira, V.M., Peres, N.M.R., Briddon, P.R., Neto, A.C.: Strained graphene: tight-binding and density functional calculations. New J. Phys. 11(11), 115002 (2009) Ribeiro, R.M., Pereira, V.M., Peres, N.M.R., Briddon, P.R., Neto, A.C.: Strained graphene: tight-binding and density functional calculations. New J. Phys. 11(11), 115002 (2009)
39.
go back to reference Ardyani, M., Ketabi, S.A., Kalami, R.: Effect of incident angle of electromagnetic radiation on the electronic and thermoelectric properties of POPGraphene nanoribbons. J. Comput. Electron. 23(3), 647–660 (2024)MATH Ardyani, M., Ketabi, S.A., Kalami, R.: Effect of incident angle of electromagnetic radiation on the electronic and thermoelectric properties of POPGraphene nanoribbons. J. Comput. Electron. 23(3), 647–660 (2024)MATH
40.
go back to reference Ardyani, M., Ketabi, S.A., Kalami, R.: Effect of electromagnetic radiation on the electronic and thermoelectric properties of armchair edge silicene nanoribbons. Solid State Commun. 384, 115486 (2024)MATH Ardyani, M., Ketabi, S.A., Kalami, R.: Effect of electromagnetic radiation on the electronic and thermoelectric properties of armchair edge silicene nanoribbons. Solid State Commun. 384, 115486 (2024)MATH
41.
go back to reference Y. Guan, O. V. Yazyev, Electronic transport in graphene with out-of-plane disorder. npj 2D mater. Appl. 8(1), 1 (2024)‏ Y. Guan, O. V. Yazyev, Electronic transport in graphene with out-of-plane disorder. npj 2D mater. Appl. 8(1), 1 (2024)‏
42.
go back to reference Yang, Y., Zhao, X., Bai, C.: Tight-binding description of zigzag graphene nanoribbons with triangular patterned structure. Ind. J. Phys. 97(7), 2007–2012 (2023)MATH Yang, Y., Zhao, X., Bai, C.: Tight-binding description of zigzag graphene nanoribbons with triangular patterned structure. Ind. J. Phys. 97(7), 2007–2012 (2023)MATH
43.
go back to reference Leccese, M., Martinazzo, R.: Anomalous delocalization of resonant states in graphene & the vacancy magnetic moment. Electro. Struct. 5(2), 024010 (2023)MATH Leccese, M., Martinazzo, R.: Anomalous delocalization of resonant states in graphene & the vacancy magnetic moment. Electro. Struct. 5(2), 024010 (2023)MATH
44.
go back to reference Kuo, D.M.: Thermoelectric properties of armchair graphene nanoribbons with array characteristics. RSC Adv. 14(5), 3513–3518 (2024)MATH Kuo, D.M.: Thermoelectric properties of armchair graphene nanoribbons with array characteristics. RSC Adv. 14(5), 3513–3518 (2024)MATH
45.
go back to reference Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997)MATH Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997)MATH
46.
go back to reference C.P. Enz, A course on many-body theory applied to solid-state physics (World Scientific, 1992). C.P. Enz, A course on many-body theory applied to solid-state physics (World Scientific, 1992).
47.
go back to reference Yang, K., Cahangirov, S., Cantarero, A., Rubio, A., D’Agosta, R.: Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys. Rev. B 89(12), 125403 (2014) Yang, K., Cahangirov, S., Cantarero, A., Rubio, A., D’Agosta, R.: Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys. Rev. B 89(12), 125403 (2014)
48.
go back to reference Sivan, U., Imry, Y.: Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge. Phys. Rev. B 33(1), 551 (1986)MATH Sivan, U., Imry, Y.: Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge. Phys. Rev. B 33(1), 551 (1986)MATH
49.
go back to reference Herman, F.: Theoretical investigation of the electronic energy band structure of solids. RMP 30(1), 102 (1958)MATH Herman, F.: Theoretical investigation of the electronic energy band structure of solids. RMP 30(1), 102 (1958)MATH
51.
go back to reference Nitzan, A.: Electron transmission through molecules and molecular interfaces. Annu. Rev. Phys. Chem. 52(1), 681–750 (2022)MATH Nitzan, A.: Electron transmission through molecules and molecular interfaces. Annu. Rev. Phys. Chem. 52(1), 681–750 (2022)MATH
53.
go back to reference Topsakal, M., Bagci, V.M.K., Ciraci, S.: Current-voltage (I− V) characteristics of armchair graphene nanoribbons under uniaxial strain. Phys. Rev. B 81(20), 205437 (2010)MATH Topsakal, M., Bagci, V.M.K., Ciraci, S.: Current-voltage (I− V) characteristics of armchair graphene nanoribbons under uniaxial strain. Phys. Rev. B 81(20), 205437 (2010)MATH
54.
go back to reference Zhou, Y., Qiu, N., Li, R., Guo, Z., Zhang, J., Fang, J., Du, S.: Negative differential resistance and rectifying performance induced by doped graphene nanoribbons p–n device. Phys. Lett. A 380(9–10), 1049–1055 (2016) Zhou, Y., Qiu, N., Li, R., Guo, Z., Zhang, J., Fang, J., Du, S.: Negative differential resistance and rectifying performance induced by doped graphene nanoribbons p–n device. Phys. Lett. A 380(9–10), 1049–1055 (2016)
55.
go back to reference Kheirabadi, S.J., Ghayour, R., Sanaee, M.: Negative differential resistance effect in different structures of armchair graphene nanoribbon. Diam. Relat. Mater. 108, 107970 (2020) Kheirabadi, S.J., Ghayour, R., Sanaee, M.: Negative differential resistance effect in different structures of armchair graphene nanoribbon. Diam. Relat. Mater. 108, 107970 (2020)
56.
go back to reference Afshari, F., Ghaffarian, M.: Electronic properties of zigzag and armchair graphene nanoribbons in the external electric and magnetic fields. Phys. E: Low-dimensional Syst. Nanostructures 89, 86–92 (2017)MATH Afshari, F., Ghaffarian, M.: Electronic properties of zigzag and armchair graphene nanoribbons in the external electric and magnetic fields. Phys. E: Low-dimensional Syst. Nanostructures 89, 86–92 (2017)MATH
57.
go back to reference Kalami, R., Ketabi, S.A.: Role of Linear Defects on the Electronic, Transport, and Thermoelectric Properties of Armchair Edge Silicene Nanoribbons. J. Electron. Mater. 52(7), 4644–4654 (2023)MATH Kalami, R., Ketabi, S.A.: Role of Linear Defects on the Electronic, Transport, and Thermoelectric Properties of Armchair Edge Silicene Nanoribbons. J. Electron. Mater. 52(7), 4644–4654 (2023)MATH
58.
go back to reference Kalami, R., Ketabi, S.A.: Electronic and Thermoelectric Properties of Armchair-Edge Silicene Nanoribbons: Role of Quantum Antidot Arrays. J. Electron. Mater. 52(10), 6566–6577 (2023)MATH Kalami, R., Ketabi, S.A.: Electronic and Thermoelectric Properties of Armchair-Edge Silicene Nanoribbons: Role of Quantum Antidot Arrays. J. Electron. Mater. 52(10), 6566–6577 (2023)MATH
Metadata
Title
Exploring the electronic and thermoelectric properties of zigzag and armchair edge Irida-Graphene nanoribbons
Authors
Reza Kalami
Seyed Ahmad Ketabi
Publication date
31-01-2025
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2025
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02263-5