Skip to main content
Top
Published in: International Journal of Data Science and Analytics 2/2023

11-11-2021 | Regular Paper

Exploring unsupervised multivariate time series representation learning for chronic disease diagnosis

Authors: Xu Zhang, Yaming Wang, Liang Zhang, Bo Jin, Hongzhe Zhang

Published in: International Journal of Data Science and Analytics | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The application of various sensors in hospitals has enabled the widespread utilization of multivariate time series signals for chronic disease diagnosis in the data-driven world. The key challenge is how to model the complex temporal (linear and nonlinear) correlations among multiple longitudinal variables. Due to scarcity of labels in practice, unsupervised learning methods have already become indispensable. However, state-of-the-art approaches mainly focus on the extraction of linear correlation-induced feature connectivity network, e.g., Pearson correlation, partial correlation, etc. To this end, for chronic disease (e.g., Parkinson disease) diagnosis, an unsupervised representation learning method is first designed to obtain informative correlation-aware signals from multivariate time series data. At the core is a contrastive learning framework with a graph neural network (GNN) encoder to capture the inter-correlation and intra-correlation of multiple longitudinal variables. Then, the previously learned representations are sent to a simple fully connected neural network, which can be trained using fewer labels compared with end-to-end complex supervised learning models. Further, to assist the decision-making process in the high-stake chronic disease detection task, model uncertainty quantification is enabled according to evidential theory. The experimental results on two public Parkinson’s disease data sets show the expressiveness of the learned embeddings, and the final lightweight classifier achieves the best performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Killin, L., Starr, J., Shiue, I., Russ, T.: Environmental risk factors for dementia: a systematic review. BMC Geriatr. 1, 175 (2016)CrossRef Killin, L., Starr, J., Shiue, I., Russ, T.: Environmental risk factors for dementia: a systematic review. BMC Geriatr. 1, 175 (2016)CrossRef
2.
go back to reference Thomson, R.: Disease briefing: Parkinson’s disease. J. Int. Pharm. Res. 3, 338–345 (2015) Thomson, R.: Disease briefing: Parkinson’s disease. J. Int. Pharm. Res. 3, 338–345 (2015)
3.
go back to reference Futoma, J., Sendak, M., Cameron, B.: Predicting disease progression with a model for multivariate longitudinal clinical data. Proc. Mach. Learn. Res. 56, 42–54 (2016) Futoma, J., Sendak, M., Cameron, B.: Predicting disease progression with a model for multivariate longitudinal clinical data. Proc. Mach. Learn. Res. 56, 42–54 (2016)
4.
go back to reference Shen, X., Finn, E.S., Scheinost. D., Rosenberg, M.D., Chun, M.M., Pa-pademetris, X., Constable, R.T.: Using connectome-based predictive modeling to predict individual behavior from brain connectivity, nature protocols, vol. 12(3), p. 506 (2017). Shen, X., Finn, E.S., Scheinost. D., Rosenberg, M.D., Chun, M.M., Pa-pademetris, X., Constable, R.T.: Using connectome-based predictive modeling to predict individual behavior from brain connectivity, nature protocols, vol. 12(3), p. 506 (2017).
5.
go back to reference Yu, R., Qiao, L., Chen, M., Lee, S.W., Fei, X., Shen, D.: Weighted graph regularized sparse brain network construction for mci identification. Pattern Recogn. 90, 220–231 (2019)CrossRef Yu, R., Qiao, L., Chen, M., Lee, S.W., Fei, X., Shen, D.: Weighted graph regularized sparse brain network construction for mci identification. Pattern Recogn. 90, 220–231 (2019)CrossRef
6.
go back to reference Huang, H., Liu, X., Jin, Y., Lee, S.W., Wee, C.Y., Shen, D.: Enhancing the representation of functional connectivity networks by fusing multi-view information for autism spectrum disorder diagnosis. Hum. Brain Mapp. 40(3), 833–854 (2019)CrossRef Huang, H., Liu, X., Jin, Y., Lee, S.W., Wee, C.Y., Shen, D.: Enhancing the representation of functional connectivity networks by fusing multi-view information for autism spectrum disorder diagnosis. Hum. Brain Mapp. 40(3), 833–854 (2019)CrossRef
7.
go back to reference Qu, Y., Liu, C.R., Zhang, K., Xiao K., Jin, B., Xiong, H.: Diagnostic sparse connectivity networks with regularization template. IEEE Trans. Knowl. Data Eng. (TKDE) (2021). Qu, Y., Liu, C.R., Zhang, K., Xiao K., Jin, B., Xiong, H.: Diagnostic sparse connectivity networks with regularization template. IEEE Trans. Knowl. Data Eng. (TKDE) (2021).
8.
go back to reference Jin, B., Cheng, K., Qu, Y., Zhang, L., Xiao, K.L., Lu, X.J., Wei, X.P.: Fast sparse connectivity network adaption via meta-learning. In: ICDM’20. pp.232–241(2020). Jin, B., Cheng, K., Qu, Y., Zhang, L., Xiao, K.L., Lu, X.J., Wei, X.P.: Fast sparse connectivity network adaption via meta-learning. In: ICDM’20. pp.232–241(2020).
9.
go back to reference Wu, Z., Pan, S., Long, G.: Connecting the dots: multivariate time series forecasting with graph neural networks. In: ACM’20 (2020). Wu, Z., Pan, S., Long, G.: Connecting the dots: multivariate time series forecasting with graph neural networks. In: ACM’20 (2020).
10.
go back to reference Zhang, X., Gao, Y., Lin, J., Lu, C.T.: Tap-net: multivariate time series classification with attentional prototypical network. In: AAAI’20, pp. 6845–6852 (2020). Zhang, X., Gao, Y., Lin, J., Lu, C.T.: Tap-net: multivariate time series classification with attentional prototypical network. In: AAAI’20, pp. 6845–6852 (2020).
11.
go back to reference Shokoohi, M., Wang, J., Keogh, E.: On the non-trivial generalization of dynamic time warping to the multi-dimensional case. In: Proceedings of the 2015 SIAM International Conference on Data Mining, pp. 289–297 (2015). Shokoohi, M., Wang, J., Keogh, E.: On the non-trivial generalization of dynamic time warping to the multi-dimensional case. In: Proceedings of the 2015 SIAM International Conference on Data Mining, pp. 289–297 (2015).
12.
go back to reference Karim, F., Majumdar, S., Darabi, H., Harford, S.: Multivariate LSTM-FCNs for time series classification. Neural Netw. 116, 237–245 (2019)CrossRef Karim, F., Majumdar, S., Darabi, H., Harford, S.: Multivariate LSTM-FCNs for time series classification. Neural Netw. 116, 237–245 (2019)CrossRef
15.
go back to reference Rajnoha, M., Mekyska, J., Burget, R., Eliasova, I., Kostalova, M., Rektorova, I.: Towards identification of hypomimia in Parkinson's disease based on face recognition methods. In: 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) (2018). pp. 1–4. https://doi.org/10.1109/ICUMT.2018.8631249 Rajnoha, M., Mekyska, J., Burget, R., Eliasova, I., Kostalova, M., Rektorova, I.: Towards identification of hypomimia in Parkinson's disease based on face recognition methods. In: 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) (2018). pp. 1–4. https://​doi.​org/​10.​1109/​ICUMT.​2018.​8631249
16.
go back to reference Dustin. T., Mike, D., Mark, V.D., Danijar, H.: Bayesian layers: a module for neural network uncertainty. In: Advances in Neural Information Processing Systems, pp. 14660–14672 (2019) Dustin. T., Mike, D., Mark, V.D., Danijar, H.: Bayesian layers: a module for neural network uncertainty. In: Advances in Neural Information Processing Systems, pp. 14660–14672 (2019)
17.
go back to reference Murat, S., Lance, K., Melih, K.: Evidential deep learning to quantify classification uncertainty. In: Advances in Neural Information Processing Systems 31, pp. 3179–3189 (2018). Murat, S., Lance, K., Melih, K.: Evidential deep learning to quantify classification uncertainty. In: Advances in Neural Information Processing Systems 31, pp. 3179–3189 (2018).
18.
go back to reference Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabási, A.: The human disease network. In: Proceedings of the National Academy of Sciences(PNAS), vol. 104, no. 21, pp. 8685–8690 (2007) Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabási, A.: The human disease network. In: Proceedings of the National Academy of Sciences(PNAS), vol. 104, no. 21, pp. 8685–8690 (2007)
19.
go back to reference Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., Jiang, T.: Altered functional connectivity in early alzheimer’s disease: a resting-state fmri study. Hum. Brain Mapp. 28(10), 967–978 (2007)CrossRef Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., Jiang, T.: Altered functional connectivity in early alzheimer’s disease: a resting-state fmri study. Hum. Brain Mapp. 28(10), 967–978 (2007)CrossRef
20.
go back to reference Banerjee, O., Ghaoui, L.E., Aspremont, A., Natsoulis, G.: Convex optimization techniques for fitting sparse Gaussian graphical models. In: Proceedings of the 23rd International Conference on Machine Learning (ICML). ACM, pp. 89–96 (2006). Banerjee, O., Ghaoui, L.E., Aspremont, A., Natsoulis, G.: Convex optimization techniques for fitting sparse Gaussian graphical models. In: Proceedings of the 23rd International Conference on Machine Learning (ICML). ACM, pp. 89–96 (2006).
21.
go back to reference Lee, H., Lee, D.S., Kang, H., Kim, B., Chung, M.K.: Sparse brain network recovery under compressed sensing. IEEE Trans. Med. Imaging 30(5), 1154–1165 (2011)CrossRef Lee, H., Lee, D.S., Kang, H., Kim, B., Chung, M.K.: Sparse brain network recovery under compressed sensing. IEEE Trans. Med. Imaging 30(5), 1154–1165 (2011)CrossRef
22.
go back to reference Candès, E.J., Wakin, M.B.: An introduction to compressive sampling, In: IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30 (2008) Candès, E.J., Wakin, M.B.: An introduction to compressive sampling, In: IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30 (2008)
23.
go back to reference Lei, Q., Yi, J., Vaculin, R.: Similarity preserving representation learning for time series clustering. In: International Joint Conferences on Artificial Intelligence Organization, pp. 2845–2851 (2017) Lei, Q., Yi, J., Vaculin, R.: Similarity preserving representation learning for time series clustering. In: International Joint Conferences on Artificial Intelligence Organization, pp. 2845–2851 (2017)
24.
go back to reference Malhotra, P., Tv, V., Vig, L.: TimeNet: pre-trained deep recurrent neural network for time series classification. In: 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2017) Malhotra, P., Tv, V., Vig, L.: TimeNet: pre-trained deep recurrent neural network for time series classification. In: 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2017)
25.
go back to reference Franceschi, J.Y.: Unsupervised Scalable representation learning for multivariate time series. In: Thirty Third Conference on Neural Information Processing Systems, vol. 32, pp. 4650–4661 (2019) Franceschi, J.Y.: Unsupervised Scalable representation learning for multivariate time series. In: Thirty Third Conference on Neural Information Processing Systems, vol. 32, pp. 4650–4661 (2019)
26.
go back to reference Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks. In: IEEE Transactions on Neural Networks and Learning Systems (2019). Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks. In: IEEE Transactions on Neural Networks and Learning Systems (2019).
27.
go back to reference Scarselli, F., Gori, M., Tsoi, C.A., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61 (2009)CrossRef Scarselli, F., Gori, M., Tsoi, C.A., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61 (2009)CrossRef
28.
go back to reference Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: multivariate time series forecasting with graph neural networks. In: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. KDD, pp. 753–763 (2020) Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: multivariate time series forecasting with graph neural networks. In: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. KDD, pp. 753–763 (2020)
29.
go back to reference Spadondesouza, G., Hong, S., Brandoli, B.: Pay attention to evolution: time series forecasting with deep graph-evolution learning. IEEE Trans. Pattern Anal. Mach. Intell. (2021) Spadondesouza, G., Hong, S., Brandoli, B.: Pay attention to evolution: time series forecasting with deep graph-evolution learning. IEEE Trans. Pattern Anal. Mach. Intell. (2021)
30.
go back to reference Du, J., Zhang, S.H., Wu, G.H., Moura, J., Kar, S.: Topology adaptive graph convolutional networks. In: International Conference on Learning Representations. ICLR (2018) Du, J., Zhang, S.H., Wu, G.H., Moura, J., Kar, S.: Topology adaptive graph convolutional networks. In: International Conference on Learning Representations. ICLR (2018)
31.
go back to reference Yikuan, L., Shishir, R., Abdelaali, H., Rema, R., Zhu, Y.J., Dexter C., Gholamreza S., Thomas L., Kazem, R.: Deep Bayesian Gaussian Processes for Uncertainty Estimation in Electronic Health Records (2020). arXiv preprint arXiv:2003.10170 Yikuan, L., Shishir, R., Abdelaali, H., Rema, R., Zhu, Y.J., Dexter C., Gholamreza S., Thomas L., Kazem, R.: Deep Bayesian Gaussian Processes for Uncertainty Estimation in Electronic Health Records (2020). arXiv preprint arXiv:​2003.​10170
32.
go back to reference Zhang, C., Bütepage, J., Kjellström, H., Mandt, S.: Advances in variational inference. IEEE Trans. Pattern Anal. Mach. Intell. 41, 2008–2026 (2019)CrossRef Zhang, C., Bütepage, J., Kjellström, H., Mandt, S.: Advances in variational inference. IEEE Trans. Pattern Anal. Mach. Intell. 41, 2008–2026 (2019)CrossRef
33.
go back to reference Sakar, B.E., Isenkul, M.E., Sakar, C.O., Sertbas, A., Gürgen, F.S., Delil, S., Apaydin, H., Kursun, O.: Collection and analysis of a parkinson speech dataset with multiple types of sound recordings. IEEE J. Biomed. Health Inform. 17, 828–834 (2013)CrossRef Sakar, B.E., Isenkul, M.E., Sakar, C.O., Sertbas, A., Gürgen, F.S., Delil, S., Apaydin, H., Kursun, O.: Collection and analysis of a parkinson speech dataset with multiple types of sound recordings. IEEE J. Biomed. Health Inform. 17, 828–834 (2013)CrossRef
34.
go back to reference Dempster, A.P.: A generalization of Bayesian inference. In: Classic Works of the Dempster–Shafer Theory of Belief Functions. Springer, pp. 73–104 (2008). Dempster, A.P.: A generalization of Bayesian inference. In: Classic Works of the Dempster–Shafer Theory of Belief Functions. Springer, pp. 73–104 (2008).
35.
go back to reference Josang, A.: Subjective Logic: A Formalism for Reasoning Under Uncertainty. Springer, Berlin (2016)CrossRefMATH Josang, A.: Subjective Logic: A Formalism for Reasoning Under Uncertainty. Springer, Berlin (2016)CrossRefMATH
36.
go back to reference Kotz, S., Balakrishnan, N., Johnson, N.L.: Continuous Multivariate Distributions. Wiley, New York (2000)CrossRefMATH Kotz, S., Balakrishnan, N., Johnson, N.L.: Continuous Multivariate Distributions. Wiley, New York (2000)CrossRefMATH
37.
go back to reference Maaten, L.V., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)MATH Maaten, L.V., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)MATH
38.
go back to reference Goodfellow, I. J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. Comput. Sci. (2014) Goodfellow, I. J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. Comput. Sci. (2014)
39.
go back to reference Szegedy, C., Liu, W., Jia, Y. Q.: Going deeper with convolutions. In: Conference on Computer Vision and Pattern Recognition. CVPR (2015) Szegedy, C., Liu, W., Jia, Y. Q.: Going deeper with convolutions. In: Conference on Computer Vision and Pattern Recognition. CVPR (2015)
40.
go back to reference Sensoy, M., Kaplan, L., Kandemir, M.: Evidential deep learning to quantify classification uncertainty, In: Advances in Neural Information Processing Systems (2018) Sensoy, M., Kaplan, L., Kandemir, M.: Evidential deep learning to quantify classification uncertainty, In: Advances in Neural Information Processing Systems (2018)
41.
go back to reference Wang, G.F., Cao, L.B., Zhao, H.K., Liu, Q., Chen, E.H.: Coupling macro-sector-micro financial indicators for learning stock representations with less uncertainty. In The 35th AAAI Conference on Artificial Intelligence. pp. 4418–4426 (2021) Wang, G.F., Cao, L.B., Zhao, H.K., Liu, Q., Chen, E.H.: Coupling macro-sector-micro financial indicators for learning stock representations with less uncertainty. In The 35th AAAI Conference on Artificial Intelligence. pp. 4418–4426 (2021)
42.
go back to reference Sakar, B.E., Isenkul, M.E., Sakar, C.O., Sertbas, O., et al.: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J. Biomed. Health Inform. 17(4), 828–834 (2013)CrossRef Sakar, B.E., Isenkul, M.E., Sakar, C.O., Sertbas, O., et al.: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J. Biomed. Health Inform. 17(4), 828–834 (2013)CrossRef
43.
go back to reference Little, M.A.P.E., McSharry, E.J., Spielman, H.J., Ramig, L.O.: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans. Biomed. Eng. 56(4), 1010–1022 (2009)CrossRef Little, M.A.P.E., McSharry, E.J., Spielman, H.J., Ramig, L.O.: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans. Biomed. Eng. 56(4), 1010–1022 (2009)CrossRef
44.
go back to reference Sakar, C.O., Kursun, O.: Telediagnosis of Parkinson’s disease using measurements of dysphonia. J. Med. Syst. 34(4), 591–599 (2010)CrossRef Sakar, C.O., Kursun, O.: Telediagnosis of Parkinson’s disease using measurements of dysphonia. J. Med. Syst. 34(4), 591–599 (2010)CrossRef
Metadata
Title
Exploring unsupervised multivariate time series representation learning for chronic disease diagnosis
Authors
Xu Zhang
Yaming Wang
Liang Zhang
Bo Jin
Hongzhe Zhang
Publication date
11-11-2021
Publisher
Springer International Publishing
Published in
International Journal of Data Science and Analytics / Issue 2/2023
Print ISSN: 2364-415X
Electronic ISSN: 2364-4168
DOI
https://doi.org/10.1007/s41060-021-00290-0

Other articles of this Issue 2/2023

International Journal of Data Science and Analytics 2/2023 Go to the issue

Premium Partner