Skip to main content
Top

2019 | OriginalPaper | Chapter

8. Explosion Source Models

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Explosive detonations produce shocked transients with highly nonlinear pressure signatures in the near field. This chapter presents the properties and defining characteristics of a suite of theoretical source pressure functions representative of detonations and deflagrations, and constructs criteria for defining reference blast pulses. Both the primary positive overpressure and the negative underpressure phases contribute to the temporal and spectral features of a blast pulse.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference ANSI S2.20-1983 (ASA 20-1983) (1983) Estimating air blast characteristics for single point explosions in air, with a guide to evaluation of atmospheric propagation effects, American National Standard ANSI S2.20-1983 (ASA 20-1983) (1983) Estimating air blast characteristics for single point explosions in air, with a guide to evaluation of atmospheric propagation effects, American National Standard
go back to reference Baker WE (1973) Explosions in air. University of Texas Press, Austin, Texas Baker WE (1973) Explosions in air. University of Texas Press, Austin, Texas
go back to reference Bethe HA, Fuchs K, Hirschfelder JO, Magee JL, von Neumann R (1958) Blast wave. Technical Report LA-2000, DTIC Document Bethe HA, Fuchs K, Hirschfelder JO, Magee JL, von Neumann R (1958) Blast wave. Technical Report LA-2000, DTIC Document
go back to reference Bonner JL, Russell DR, Reinke RE (2013) Modeling surface waves from aboveground and underground explosions in alluvium and limestone. Bull Seismol Soc Am 103(6):2953–2970CrossRef Bonner JL, Russell DR, Reinke RE (2013) Modeling surface waves from aboveground and underground explosions in alluvium and limestone. Bull Seismol Soc Am 103(6):2953–2970CrossRef
go back to reference Brode HL (1956) Point source explosions in air, The Rand Corporation, Research Memo RM-1824-AEC Brode HL (1956) Point source explosions in air, The Rand Corporation, Research Memo RM-1824-AEC
go back to reference Cole RH (1948) Underwater explosions. Princeton University Press, New JerseyCrossRef Cole RH (1948) Underwater explosions. Princeton University Press, New JerseyCrossRef
go back to reference Ens TA, Brown PG, Edwards WN, Silber EA (2012) Infrasound production by bolides: a statistical study. J Atmos Sol-Terr Phys 80:208–229CrossRef Ens TA, Brown PG, Edwards WN, Silber EA (2012) Infrasound production by bolides: a statistical study. J Atmos Sol-Terr Phys 80:208–229CrossRef
go back to reference Freidlander FG (1946) The diffraction of sound pulses. I. Diffraction by a semi-infinite plate. Proc R Soc Lond A 186:322–344CrossRef Freidlander FG (1946) The diffraction of sound pulses. I. Diffraction by a semi-infinite plate. Proc R Soc Lond A 186:322–344CrossRef
go back to reference Ford SR, Rodgers AJ, Xu H, Templeton DC, Harben P, Foxall W, Reinke RE (2014) Partitioning of seismoacoustic energy and estimation of yield and height-of-burst/depth-of-burial for near-surface explosions. Bull Seismol Soc Am 104:608–623. https://doi.org/10.1785/0120130CrossRef Ford SR, Rodgers AJ, Xu H, Templeton DC, Harben P, Foxall W, Reinke RE (2014) Partitioning of seismoacoustic energy and estimation of yield and height-of-burst/depth-of-burial for near-surface explosions. Bull Seismol Soc Am 104:608–623. https://​doi.​org/​10.​1785/​0120130CrossRef
go back to reference Garcés MA (2014) Ubiquitous waveform sensing: infrasound, NNSA review of monitoring research (RMR) for ground-based nuclear explosion monitoring technologies, Albuquerque, New Mexico, 17–19 June Garcés MA (2014) Ubiquitous waveform sensing: infrasound, NNSA review of monitoring research (RMR) for ground-based nuclear explosion monitoring technologies, Albuquerque, New Mexico, 17–19 June
go back to reference Garcés MA (1995) The acoustics of volcanic explosions. PhD Thesis, University of California, San Diego Garcés MA (1995) The acoustics of volcanic explosions. PhD Thesis, University of California, San Diego
go back to reference Granström SA (1956) Loading characteristics of air blasts from detonating charges, Technical Report 100, Transactions of the Royal Institute of Technology, Stockholm Granström SA (1956) Loading characteristics of air blasts from detonating charges, Technical Report 100, Transactions of the Royal Institute of Technology, Stockholm
go back to reference Guzas E, Earls C (2010) Air blast load generation for simulating structural response. Steel Compos Struct 10(5):429–455CrossRef Guzas E, Earls C (2010) Air blast load generation for simulating structural response. Steel Compos Struct 10(5):429–455CrossRef
go back to reference Kinney GF, Graham KJ (1985) Explosive shocks in air, 2nd edn. Springer, New York, p 269CrossRef Kinney GF, Graham KJ (1985) Explosive shocks in air, 2nd edn. Springer, New York, p 269CrossRef
go back to reference Koper KD, Wallace TC, Reinke R, Leverette J (2002) Empirical scaling laws for truck bomb explosions based on seismic and acoustic data. Bull Seismol Soc Am 92:527–542CrossRef Koper KD, Wallace TC, Reinke R, Leverette J (2002) Empirical scaling laws for truck bomb explosions based on seismic and acoustic data. Bull Seismol Soc Am 92:527–542CrossRef
go back to reference Larcher M (2008) Pressure-time functions for the description of air blast waves, JRC Technical Note, No. 46829, Joint Research Centre, European Commission Larcher M (2008) Pressure-time functions for the description of air blast waves, JRC Technical Note, No. 46829, Joint Research Centre, European Commission
go back to reference Needham CE, Crepeau JE (1981) The DNA nuclear blast standard (1kt), DNA 5648T report prepared by Systems, Science, and Sofware, Inc. for the Defense Nuclear Energy (DNA) Needham CE, Crepeau JE (1981) The DNA nuclear blast standard (1kt), DNA 5648T report prepared by Systems, Science, and Sofware, Inc. for the Defense Nuclear Energy (DNA)
go back to reference Petes J, Miller R, McMullan F (1983) User’s guide and history of ANFO as a nuclear weapons effect simulation explosive, Defense Nuclear Energy Report Number DNA-TR-82-156 Petes J, Miller R, McMullan F (1983) User’s guide and history of ANFO as a nuclear weapons effect simulation explosive, Defense Nuclear Energy Report Number DNA-TR-82-156
go back to reference Reed JW (1977) Atmospheric attenuation of explosion waves. J Acoust Soc Am 61(1):39–47CrossRef Reed JW (1977) Atmospheric attenuation of explosion waves. J Acoust Soc Am 61(1):39–47CrossRef
go back to reference Rigby SE, Tyas A, Bennet T, Clarke SD, Fay SD (2014) The negative phase of the blast load. Int J Prot Struct 5(1):1–20. ISSN 2014-4196CrossRef Rigby SE, Tyas A, Bennet T, Clarke SD, Fay SD (2014) The negative phase of the blast load. Int J Prot Struct 5(1):1–20. ISSN 2014-4196CrossRef
go back to reference Schnurr J, Garces MA, Rodgers A, Kim K (2017) Improved recording and modeling for near-surface explosion forensics. Fall Meeting of the American Geophysical Union, pp S51B–0592 Schnurr J, Garces MA, Rodgers A, Kim K (2017) Improved recording and modeling for near-surface explosion forensics. Fall Meeting of the American Geophysical Union, pp S51B–0592
go back to reference Smith PD, Hetherington JG (1994) Blast and ballistic loading of structures. Butterworth-Heinemann, Oxford, England Smith PD, Hetherington JG (1994) Blast and ballistic loading of structures. Butterworth-Heinemann, Oxford, England
go back to reference Stevens JL, Divnov II, Adams DA, Murphy JR, Bourchik VN (2002) Constraints on infrasound scaling and attenuation relations from Soviet explosion data. Pure Appl Geopys 159:1045–1062CrossRef Stevens JL, Divnov II, Adams DA, Murphy JR, Bourchik VN (2002) Constraints on infrasound scaling and attenuation relations from Soviet explosion data. Pure Appl Geopys 159:1045–1062CrossRef
go back to reference Teich M, Gebbeken N (2010) The influence of the underpressure phase on the dynamic response of structures subjected to blast loads. Int J Prot Struct 1(2):219–234CrossRef Teich M, Gebbeken N (2010) The influence of the underpressure phase on the dynamic response of structures subjected to blast loads. Int J Prot Struct 1(2):219–234CrossRef
go back to reference Unified Facilities Criteria (2014) Structures to resist the effects of accidental explosions, 2014. US DoD, Washington DC, USA, UFC-3-340-02, 2008, Change 2, 1 Sept 2014 Unified Facilities Criteria (2014) Structures to resist the effects of accidental explosions, 2014. US DoD, Washington DC, USA, UFC-3-340-02, 2008, Change 2, 1 Sept 2014
go back to reference US Naval Facilities Engineering Command (1986) Blast resistant structures. Alexandria, VA, DM 2.08 US Naval Facilities Engineering Command (1986) Blast resistant structures. Alexandria, VA, DM 2.08
go back to reference US Army Corps of Engineers (2005) Methodology manual for the single-degree-of-freedom blast effects design spreadsheets (SBEDS). ACE Protective Design Center, Omaha, NE, USA, PDC-TR-06-01 US Army Corps of Engineers (2005) Methodology manual for the single-degree-of-freedom blast effects design spreadsheets (SBEDS). ACE Protective Design Center, Omaha, NE, USA, PDC-TR-06-01
go back to reference Vergoz J, Le Pichon A, Ceranna L, Mialle P, Gaillard P, Brachet N (2013) Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. In: 2013 infrasound technology workshop, Vienna, Austria Vergoz J, Le Pichon A, Ceranna L, Mialle P, Gaillard P, Brachet N (2013) Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. In: 2013 infrasound technology workshop, Vienna, Austria
Metadata
Title
Explosion Source Models
Author
Milton Garces
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-75140-5_8

Premium Partner