Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Metallurgist 5-6/2022

28-09-2022

Extraction of Nickel from Oxidized Nickel Ores by Heap Leaching

Authors: A. S. Gavrilov, A. G. Krasheninin, S. A. Petrova, D. S. Reutov

Published in: Metallurgist | Issue 5-6/2022

Login to get access
share
SHARE

Abstract

A characteristic feature of serpentine oxidized nickel ores (ONO) of the Serov deposit (≈ 1 wt.% Ni) is the increased content of iron and magnesium. The main nickel-containing phases are lizardite, antigorite, clinochlore and iron oxides with the nickel content varying from 1.6 to 9.2 wt.%.
Heap (percolation) leaching with aqueous H2SO4 solutions was used for processing. During a pilot study, 89% of nickel, 99% of cobalt, and 78.4% of iron were extracted from the oxidized nickel ores during 440 days of leaching at an acid consumption rate of 475.1 kg per ton of ore. The high iron content of the product solutions did not allow for high-quality extraction of nickel and cobalt. The dependences of the nickel, cobalt, and iron extraction on the irrigation pauses, initial size of the ore fragments, and specific consumption of the leaching solution were studied. A solution was found on how to reduce the sulfuric acid consumption and considerably decrease the iron content of the product solutions by increasing a pause between irrigations at the initial stage of or leaching and redirecting the leaching solutions to treat fresh ore. In this case, iron is hydrolyzed in the form of insoluble hydroxides within the ore body. The optimal process conditions of heap leaching of such ores are as follows: initial size of ore fragments – 50 mm; concentration of H2SO4 solutions – decreasing from 20 to 5 g/dm3 during the leaching process; irrigation density – 140 dm3 per ton of ore; combination of the irrigation pauses from 4 days during the initial stages to 1 day during the subsequent stages. Given the average rate of H2SO4 consumption of 221 kg per 1 ton of ore and leaching duration of 408 days, these conditions make it possible to extract up to 62% of nickel and 66.7% of cobalt, as well as significantly reduce the percentage of iron leached from the ore to obtain iron-free product solutions suitable for extraction of nickel and cobalt.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference I. D. Reznik, G. P. Yermakov, and Ya. M. Shneerson, Nickel: in 3 Vol., Vol. 2, Oxidized Nickel Ores. Characteristics of Ores. Pyrometallurgy and Hydrometallurgy of Oxidized Nickel Ores [in Russian], OOO “Nauka i Tekhnologii,” Moscow (2004). I. D. Reznik, G. P. Yermakov, and Ya. M. Shneerson, Nickel: in 3 Vol., Vol. 2, Oxidized Nickel Ores. Characteristics of Ores. Pyrometallurgy and Hydrometallurgy of Oxidized Nickel Ores [in Russian], OOO “Nauka i Tekhnologii,” Moscow (2004).
2.
go back to reference A.P. Stavskii (editor), Mineral Raw Materials from Earth Depths to the Market: in 3 Vol., Vol. 2, Non-ferrous Metals. Aluminum, Copper, Nickel, Tin, Lead, Zinc [in Russian], Nauchnyi Mir, Moscow (2011). A.P. Stavskii (editor), Mineral Raw Materials from Earth Depths to the Market: in 3 Vol., Vol. 2, Non-ferrous Metals. Aluminum, Copper, Nickel, Tin, Lead, Zinc [in Russian], Nauchnyi Mir, Moscow (2011).
3.
go back to reference Information and Technical Reference Book. Nickel and Cobalt Production [in Russian], NDT Bureau, Moscow (2016). Information and Technical Reference Book. Nickel and Cobalt Production [in Russian], NDT Bureau, Moscow (2016).
4.
go back to reference Information and Technical Reference Book. Nickel and Cobalt Production [in Russian], NDT Bureau, Moscow (2019). Information and Technical Reference Book. Nickel and Cobalt Production [in Russian], NDT Bureau, Moscow (2019).
5.
go back to reference O. B. Kolmachikhina, Combined Technology of Processing Oxidized Nickel Ores (Case Study: Serov Deposit), Dissert. Cand. Sci. (Eng.); May 16, 2002; Yekaterinburg (2018). O. B. Kolmachikhina, Combined Technology of Processing Oxidized Nickel Ores (Case Study: Serov Deposit), Dissert. Cand. Sci. (Eng.); May 16, 2002; Yekaterinburg (2018).
6.
go back to reference M. I. Kalashnikova, L. B. Tsymbulov, S. S. Naboichenko, and O. B. Kolmachikhina, “Promising directions of processing oxidized nickel ores as applied to the ores from Ural deposits,” Tsvetnye Metally, No. 8, 4–11 (2019). M. I. Kalashnikova, L. B. Tsymbulov, S. S. Naboichenko, and O. B. Kolmachikhina, “Promising directions of processing oxidized nickel ores as applied to the ores from Ural deposits,” Tsvetnye Metally, No. 8, 4–11 (2019).
7.
go back to reference S. V. Sergeeva, Development of Electrothermal Technology for the Production of Ferronickel from Ural Serpentine Ores, Dissert. Cand. Sci. (Eng.); May 16, 2002; Yekaterinburg (2017). S. V. Sergeeva, Development of Electrothermal Technology for the Production of Ferronickel from Ural Serpentine Ores, Dissert. Cand. Sci. (Eng.); May 16, 2002; Yekaterinburg (2017).
8.
go back to reference A. M. Klushnikov, Development of the Technology of Joint Pyrometallurgical Processing of Oxidized Nickel and Copper Sulfide Ores, Dissert. Cand. Sci. (Eng.); May 16, 2002; Yekaterinburg (2017). A. M. Klushnikov, Development of the Technology of Joint Pyrometallurgical Processing of Oxidized Nickel and Copper Sulfide Ores, Dissert. Cand. Sci. (Eng.); May 16, 2002; Yekaterinburg (2017).
9.
go back to reference A. M. Koganovskii, N. A. Klimenko, T. M. Levchenko, R. M. Marutovskii, and I. G. Roda, Waste Water Treatment and Use in Industrial Water Supply [in Russian], Khimiya, Moscow (1983). A. M. Koganovskii, N. A. Klimenko, T. M. Levchenko, R. M. Marutovskii, and I. G. Roda, Waste Water Treatment and Use in Industrial Water Supply [in Russian], Khimiya, Moscow (1983).
10.
go back to reference K. M. Smirnov, T. V. Molchanova, A. V. Ananyev, and O. K. Krylova, “Technology of hydrometallurgical processing of nickelmagnesia ores of the Aganozersk deposit,” Metally, No. 4, 13-18 (2018). K. M. Smirnov, T. V. Molchanova, A. V. Ananyev, and O. K. Krylova, “Technology of hydrometallurgical processing of nickelmagnesia ores of the Aganozersk deposit,” Metally, No. 4, 13-18 (2018).
11.
go back to reference D. B. Baskov, S. V. Plekhanov, S. L. Orlov, and G. A. Sereda, Method of Extracting Nickel and Cobalt from Silicate Nickel Ores, RF Patent No. 2161658, IPC C 22 B 23/00, Appl. No. 2000116618/02; Filing date: June 28, 2000; Publ. date: January 10, 2001; Bul. 1. D. B. Baskov, S. V. Plekhanov, S. L. Orlov, and G. A. Sereda, Method of Extracting Nickel and Cobalt from Silicate Nickel Ores, RF Patent No. 2161658, IPC C 22 B 23/00, Appl. No. 2000116618/02; Filing date: June 28, 2000; Publ. date: January 10, 2001; Bul. 1.
12.
go back to reference R. G. McDonald and B. I. Whittington, “Atmospheric acid leaching of nickel laterites review. Part I. Sulphuric acid technologies,” Hydrometallurgy, No. 91, 35–55 (2008); “Part II. Chloride and Bio-Technologies,” Hydrometallurgy, 56–69. R. G. McDonald and B. I. Whittington, “Atmospheric acid leaching of nickel laterites review. Part I. Sulphuric acid technologies,” Hydrometallurgy, No. 91, 35–55 (2008); “Part II. Chloride and Bio-Technologies,” Hydrometallurgy, 56–69.
13.
go back to reference G. S. Grebnev, N. V. Savenya, M. N. Savenya, and S. A. Sukleta, Method of Extracting Nickel and Cobalt from Nickel-Cobalt Silicate Ores, RF Patent No. 2465449, IPC E 21 B 43/28, Appl. No. 2011103543/03; Filing date: February 01, 2011; Publ. date: October 27, 2012; Bul. 30. G. S. Grebnev, N. V. Savenya, M. N. Savenya, and S. A. Sukleta, Method of Extracting Nickel and Cobalt from Nickel-Cobalt Silicate Ores, RF Patent No. 2465449, IPC E 21 B 43/28, Appl. No. 2011103543/03; Filing date: February 01, 2011; Publ. date: October 27, 2012; Bul. 30.
14.
go back to reference I. I. Kalinichenko, V. V. Vaitner, A. S. Molodykh, and V. N. Shubin, Method for Processing Oxidized Nickel Ores, RF Patent No. 2532871, IPC C 22 B 23/00, Appl. No. 2013118820/02; Filing date: April 23, 2013; Publ. date: November 10, 2014; Bul. 31. I. I. Kalinichenko, V. V. Vaitner, A. S. Molodykh, and V. N. Shubin, Method for Processing Oxidized Nickel Ores, RF Patent No. 2532871, IPC C 22 B 23/00, Appl. No. 2013118820/02; Filing date: April 23, 2013; Publ. date: November 10, 2014; Bul. 31.
15.
go back to reference B. Ma, W. Yang, B. Yang, C. Wang, Y. Chen, and Y. Zhang, “Pilot-scale plant study on the innovative nitric acid pressure leaching technology for laterite ores,” Hydrometallurgy, No. 155, 88–94 (2015). B. Ma, W. Yang, B. Yang, C. Wang, Y. Chen, and Y. Zhang, “Pilot-scale plant study on the innovative nitric acid pressure leaching technology for laterite ores,” Hydrometallurgy, No. 155, 88–94 (2015).
16.
go back to reference S. Kursunoglu and M. Kaya, “Atmospheric pressure acid leaching of Caldag lateritic nickel ore,” Intern. J. of Mineral Processing, 150, 1–8 (2016). CrossRef S. Kursunoglu and M. Kaya, “Atmospheric pressure acid leaching of Caldag lateritic nickel ore,” Intern. J. of Mineral Processing, 150, 1–8 (2016). CrossRef
17.
go back to reference G. S. Simate, S. Ndlovu, and L. F. Walubita, “Fungal and chemolithotrophic leaching of nickel laterites – Challenges and opportunities,” Hydrometallurgy, 103, 150–157 (2010). CrossRef G. S. Simate, S. Ndlovu, and L. F. Walubita, “Fungal and chemolithotrophic leaching of nickel laterites – Challenges and opportunities,” Hydrometallurgy, 103, 150–157 (2010). CrossRef
18.
go back to reference G. S. Simate, S. Ndlovu, and M. Gericke, “Bacterial leaching of nickel laterites using chemolithotrophic microorganisms: Process optimization using response surface methodology and central composite rotatable design,” Hydrometallurgy, 98, 241–246 (2009). CrossRef G. S. Simate, S. Ndlovu, and M. Gericke, “Bacterial leaching of nickel laterites using chemolithotrophic microorganisms: Process optimization using response surface methodology and central composite rotatable design,” Hydrometallurgy, 98, 241–246 (2009). CrossRef
19.
go back to reference Ye. A. Kim, Development of the Process of Bioleaching Nickel Silicate Ores of an Ferromagnesian Type [in Russian], Abstract Dissert. Cand. Sci. (Eng.), MISiS, Moscow (2010). Ye. A. Kim, Development of the Process of Bioleaching Nickel Silicate Ores of an Ferromagnesian Type [in Russian], Abstract Dissert. Cand. Sci. (Eng.), MISiS, Moscow (2010).
20.
go back to reference R. Barbaroux, G. Mercier, J. F. Blais, J. L. Morel, and M. O. Simonnot, “A new method for obtaining nickel from the hyperaccumulator plant Alyssum murale,” Separation and Purification Technology, 83, 57-65 (2011). CrossRef R. Barbaroux, G. Mercier, J. F. Blais, J. L. Morel, and M. O. Simonnot, “A new method for obtaining nickel from the hyperaccumulator plant Alyssum murale,” Separation and Purification Technology, 83, 57-65 (2011). CrossRef
21.
go back to reference Prof. S. S. Naboichenko (editor), Ural Nickel. Developmental Trends: Round Table Materials [in Russian], Dr. Sci. (Eng.), UrFU, Yekateriburg (2013). Prof. S. S. Naboichenko (editor), Ural Nickel. Developmental Trends: Round Table Materials [in Russian], Dr. Sci. (Eng.), UrFU, Yekateriburg (2013).
22.
go back to reference A. Oxley, M. R. Smith, and O. Caceres, “Why heap leach nickel laterites?” Minerals Engineering, 88, 53–60 (2016). CrossRef A. Oxley, M. R. Smith, and O. Caceres, “Why heap leach nickel laterites?” Minerals Engineering, 88, 53–60 (2016). CrossRef
23.
go back to reference P. Yu. Chuvashov, N. A. Vatolin, and B. D. Khalezov, “Optimal conditions of leaching nickel and cobalt from oxidized nickel ores of the Serov deposit,” Khimicheskaya Tekhnologiya, 13, No. 2, 72–75 (2012). P. Yu. Chuvashov, N. A. Vatolin, and B. D. Khalezov, “Optimal conditions of leaching nickel and cobalt from oxidized nickel ores of the Serov deposit,” Khimicheskaya Tekhnologiya, 13, No. 2, 72–75 (2012).
24.
go back to reference A. I. Kalabin, Mineral Production by Underground Leaching and Other Geotechnological Methods [in Russian], Atomizdat, Moscow (1981). A. I. Kalabin, Mineral Production by Underground Leaching and Other Geotechnological Methods [in Russian], Atomizdat, Moscow (1981).
25.
go back to reference J. Li, D. Li, Z. Xu, C. Liao, Y. Liu, and B. Zhong, “Selective leaching of valuable metals from laterite nickel ore with ammonium chloride-hydrocloric acid solution,” J. of Cleaner Production, 179, 24–30 (2018). CrossRef J. Li, D. Li, Z. Xu, C. Liao, Y. Liu, and B. Zhong, “Selective leaching of valuable metals from laterite nickel ore with ammonium chloride-hydrocloric acid solution,” J. of Cleaner Production, 179, 24–30 (2018). CrossRef
26.
go back to reference S. H. Ahoranta, M. K. Peltola, A.-M. Lakaniemi, and J. A. Puhakka, “Enhancing the activity of iron-oxidizing bacteria: A case study with process liquors from heap bioleaching of complex sulfide ores,” Hydrometallurgy, 167, 163–172 (2017). CrossRef S. H. Ahoranta, M. K. Peltola, A.-M. Lakaniemi, and J. A. Puhakka, “Enhancing the activity of iron-oxidizing bacteria: A case study with process liquors from heap bioleaching of complex sulfide ores,” Hydrometallurgy, 167, 163–172 (2017). CrossRef
27.
go back to reference B. D. Khalezov, A. S. Gavrilov, A. G. Krasheninin, and Ye. A. Zelenin, Method of Processing Oxidized Nickel Ores, RF Patent No. 2618595, IPC C 22 B 23/00, Appl. No. 2016111038; Filing date: March 24, 2016; Publ. date: May 04, 2017; Bul. 13. B. D. Khalezov, A. S. Gavrilov, A. G. Krasheninin, and Ye. A. Zelenin, Method of Processing Oxidized Nickel Ores, RF Patent No. 2618595, IPC C 22 B 23/00, Appl. No. 2016111038; Filing date: March 24, 2016; Publ. date: May 04, 2017; Bul. 13.
Metadata
Title
Extraction of Nickel from Oxidized Nickel Ores by Heap Leaching
Authors
A. S. Gavrilov
A. G. Krasheninin
S. A. Petrova
D. S. Reutov
Publication date
28-09-2022
Publisher
Springer US
Published in
Metallurgist / Issue 5-6/2022
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01364-5

Other articles of this Issue 5-6/2022

Metallurgist 5-6/2022 Go to the issue

Premium Partners