Skip to main content
Top
Published in:

10-06-2022

Extreme Learning Machine with Kernels for Solving Elliptic Partial Differential Equations

Authors: Shaohong Li, Guoguo Liu, Shiguo Xiao

Published in: Cognitive Computation | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Finding solutions for partial differential equations based on machine learning methods is an ongoing challenge in applied mathematics. Although machine learning methods have been successfully applied to solve partial differential equations, their practical applications are limited by a large number of variables. In this study, after a strict theoretical derivation, a new method is proposed for solving standard elliptic partial differential equations based on an extreme learning machine with kernels. The parameters of the proposed method (i.e., regularization coefficients and kernel parameters) were obtained by a grid search approach. Three numerical cases combined with some comprehensive indices (mean absolute error, mean squared error and standard deviation) were used to test the performance of the proposed method. The results show that the performance of the proposed method is superior to that of existing methods, including the wavelet neural network optimized with the improved butterfly optimization algorithm. In addition, the proposed method has fewer unknown parameters than previous methods, which makes its calculations more convenient. In this study, the effect of the number of training points on the calculation results is also discussed, and the advantage of the proposed method is that only a few training points are needed to achieve high computational accuracy. In addition, as a case study, the proposed method is successfully applied to simulate the water flow in unsaturated soils. The proposed method provides new insight for solving elliptic partial differential equations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Alzubi JA, Alzubi OA, Chen TM. Forward error correction based on algebraic-geometric theory. Springer. 2014. Alzubi JA, Alzubi OA, Chen TM. Forward error correction based on algebraic-geometric theory. Springer. 2014.
2.
go back to reference Collins BD, Znidarcic D. Stability analyses of rainfall induced landslides. Journal of Geotechnical and Geoenvironmental Engineering. 2004;130(4):362–72.CrossRef Collins BD, Znidarcic D. Stability analyses of rainfall induced landslides. Journal of Geotechnical and Geoenvironmental Engineering. 2004;130(4):362–72.CrossRef
3.
go back to reference Iverson RM. Landslide triggering by rain infiltration. Water Resour Res. 2000;36(7):1897–910.CrossRef Iverson RM. Landslide triggering by rain infiltration. Water Resour Res. 2000;36(7):1897–910.CrossRef
4.
go back to reference Lu N, Godt J W. Hillslope hydrology and stability. Cambridge University Press. 2013. Lu N, Godt J W. Hillslope hydrology and stability. Cambridge University Press. 2013.
5.
go back to reference Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.CrossRef Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.CrossRef
7.
go back to reference Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural Networks. 1999;10(5):988–99.CrossRef Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural Networks. 1999;10(5):988–99.CrossRef
8.
go back to reference Tan LS, Zainuddin Z, Ong P. Wavelet neural networks based solutions for elliptic partial differential equations with improved butterfly optimization algorithm training. Appl Soft Comput. 2020;95:106518.CrossRef Tan LS, Zainuddin Z, Ong P. Wavelet neural networks based solutions for elliptic partial differential equations with improved butterfly optimization algorithm training. Appl Soft Comput. 2020;95:106518.CrossRef
9.
go back to reference Lagaris IE, Likas A, Fotiadis DI. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Networks. 1998;9(5):987–1000.CrossRef Lagaris IE, Likas A, Fotiadis DI. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Networks. 1998;9(5):987–1000.CrossRef
10.
go back to reference Lagaris IE, Likas AC, Papageorgiou DG. Neural-network methods for boundary value problems with irregular boundaries. IEEE Trans Neural Networks. 2000;11(5):1041–9.CrossRef Lagaris IE, Likas AC, Papageorgiou DG. Neural-network methods for boundary value problems with irregular boundaries. IEEE Trans Neural Networks. 2000;11(5):1041–9.CrossRef
11.
go back to reference Alli H, Uçar A, Demir Y. The solutions of vibration control problems using artificial neural networks. J Franklin Inst. 2003;340(5):307–25.MathSciNetCrossRefMATH Alli H, Uçar A, Demir Y. The solutions of vibration control problems using artificial neural networks. J Franklin Inst. 2003;340(5):307–25.MathSciNetCrossRefMATH
12.
go back to reference Filici C. On a neural approximator to ODEs. IEEE Trans Neural Networks. 2008;19(3):539–43.CrossRef Filici C. On a neural approximator to ODEs. IEEE Trans Neural Networks. 2008;19(3):539–43.CrossRef
13.
14.
go back to reference Alzubi OA, Alzubi JA, Dorgham O, Alsayyed M. Cryptosystem design based on Hermitian curves for IoT security. J Supercomput. 2020;76:8566–89.CrossRef Alzubi OA, Alzubi JA, Dorgham O, Alsayyed M. Cryptosystem design based on Hermitian curves for IoT security. J Supercomput. 2020;76:8566–89.CrossRef
15.
go back to reference Alzubi OA, Alzubi JA, Tedmori S, Rashaideh H, Almomani O. Consensus-based combining method for classifier ensembles. The International Arab Journal of Information Technology. 2018;15(1):76–86. Alzubi OA, Alzubi JA, Tedmori S, Rashaideh H, Almomani O. Consensus-based combining method for classifier ensembles. The International Arab Journal of Information Technology. 2018;15(1):76–86.
16.
go back to reference Gheisari M, Panwar D, Tomar P, Harsh H, Zhang X, Solanki A, Alzubi JA. An optimization model for software quality prediction with case study analysis using MATLAB. IEEE Access. 2019;7:85123–38.CrossRef Gheisari M, Panwar D, Tomar P, Harsh H, Zhang X, Solanki A, Alzubi JA. An optimization model for software quality prediction with case study analysis using MATLAB. IEEE Access. 2019;7:85123–38.CrossRef
17.
go back to reference Huang GB, Zhu QY, Siew CB. Extreme learning machine: a new learning scheme of feedforward neural networks. IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541) 2004;2:985–90. Huang GB, Zhu QY, Siew CB. Extreme learning machine: a new learning scheme of feedforward neural networks. IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541) 2004;2:985–90.
18.
go back to reference Huang GB, Zhu QY, Siew CB. Extreme learning machine: Theory and applications. Neurocomputing. 2006;70:489–501.CrossRef Huang GB, Zhu QY, Siew CB. Extreme learning machine: Theory and applications. Neurocomputing. 2006;70:489–501.CrossRef
19.
go back to reference Huang FM, Huang JS, Jiang SH, Zhou CB. Landslide displacement prediction based on multivariate chaotic model and extreme learning machine. Eng Geol. 2017a;218:173–86.CrossRef Huang FM, Huang JS, Jiang SH, Zhou CB. Landslide displacement prediction based on multivariate chaotic model and extreme learning machine. Eng Geol. 2017a;218:173–86.CrossRef
20.
go back to reference Huang FM, Yin KL, Huang JS, Gui L, Wang P. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng Geol. 2017b;223:11–22.CrossRef Huang FM, Yin KL, Huang JS, Gui L, Wang P. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng Geol. 2017b;223:11–22.CrossRef
21.
go back to reference Liu C, Sun B, Zhang CH, Li F. A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine. Appl Energy. 2020;275:115383.CrossRef Liu C, Sun B, Zhang CH, Li F. A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine. Appl Energy. 2020;275:115383.CrossRef
22.
go back to reference Albu F, Hagiescu D, Vladutu L, Puica MA. Neural network approaches for children’s emotion recognition in intelligent learning applications. In EDULEARN15 7th Annu Int Conf Educ New Learn Technol Barcelona, Spain, 6th-8th. 2015. Albu F, Hagiescu D, Vladutu L, Puica MA. Neural network approaches for children’s emotion recognition in intelligent learning applications. In EDULEARN15 7th Annu Int Conf Educ New Learn Technol Barcelona, Spain, 6th-8th. 2015.
23.
go back to reference Malathi V, Marimuthu NS, Baskar S, Ramar K. Application of extreme learning machine for series compensated transmission line protection. Eng Appl Artif Intell. 2011;24(5):880–7.CrossRef Malathi V, Marimuthu NS, Baskar S, Ramar K. Application of extreme learning machine for series compensated transmission line protection. Eng Appl Artif Intell. 2011;24(5):880–7.CrossRef
24.
go back to reference Huang GB. An Insight into Extreme Learning Machines: Random Neurons. Random Features and Kernels Cognitive Computation. 2014;6(3):376–90.CrossRef Huang GB. An Insight into Extreme Learning Machines: Random Neurons. Random Features and Kernels Cognitive Computation. 2014;6(3):376–90.CrossRef
25.
go back to reference Zhou C, Yin KL, Cao Y, Intrieri E, Ahmed B, Catani F. Displacement prediction of step-like landslide by applying a novel kernel extreme learning machine method. Landslides. 2018;15(11):2211–25.CrossRef Zhou C, Yin KL, Cao Y, Intrieri E, Ahmed B, Catani F. Displacement prediction of step-like landslide by applying a novel kernel extreme learning machine method. Landslides. 2018;15(11):2211–25.CrossRef
26.
go back to reference Alizamir M, Kim S, Zounemat-Kermani M, Heddam S, Kim NW, Singh VP. Kernel extreme learning machine: an efficient model for estimating daily dew point temperature using weather data. Water. 2020;12(9):2600.CrossRef Alizamir M, Kim S, Zounemat-Kermani M, Heddam S, Kim NW, Singh VP. Kernel extreme learning machine: an efficient model for estimating daily dew point temperature using weather data. Water. 2020;12(9):2600.CrossRef
27.
go back to reference Li YF, Shi HP, Liu H. A hybrid model for river water level forecasting: cases of Xiangjiang River and Yuanjiang River, China. J Hydrol. 2020;124934. Li YF, Shi HP, Liu H. A hybrid model for river water level forecasting: cases of Xiangjiang River and Yuanjiang River, China. J Hydrol. 2020;124934.
28.
go back to reference Chen SY, Gu CS, Lin CN, Hariri-Ardebili MA. Prediction of arch dam deformation via correlated multi-target stacking. Appl Math Model. 2021;91:1175–93.MathSciNetCrossRefMATH Chen SY, Gu CS, Lin CN, Hariri-Ardebili MA. Prediction of arch dam deformation via correlated multi-target stacking. Appl Math Model. 2021;91:1175–93.MathSciNetCrossRefMATH
29.
go back to reference Mall S, Chakraverty S. Single layer Chebyshev neural network model for solving elliptic partial differential equations. Neural Process Lett. 2017;45(3):825–40.CrossRef Mall S, Chakraverty S. Single layer Chebyshev neural network model for solving elliptic partial differential equations. Neural Process Lett. 2017;45(3):825–40.CrossRef
30.
go back to reference Peng X. TSVR: an efficient twin support vector machine for regression. Neural Netw. 2010;23(3):365–72.CrossRefMATH Peng X. TSVR: an efficient twin support vector machine for regression. Neural Netw. 2010;23(3):365–72.CrossRefMATH
31.
go back to reference Javadi AA, Ahangar-Asr A, Johari A, Faramarzi A, Toll D. Modelling stress–strain and volume change behaviour of unsaturated soils using an evolutionary based data mining technique, an incremental approach. Eng Appl Artif Intell. 2012;25(5):926–33.CrossRef Javadi AA, Ahangar-Asr A, Johari A, Faramarzi A, Toll D. Modelling stress–strain and volume change behaviour of unsaturated soils using an evolutionary based data mining technique, an incremental approach. Eng Appl Artif Intell. 2012;25(5):926–33.CrossRef
32.
go back to reference Wu LZ, Zhu SR, Peng PJ. Application of the Chebyshev spectral method to the simulation of groundwater flow and rainfall-induced landslides. Appl Math Model. 2020;80:408–25.MathSciNetCrossRefMATH Wu LZ, Zhu SR, Peng PJ. Application of the Chebyshev spectral method to the simulation of groundwater flow and rainfall-induced landslides. Appl Math Model. 2020;80:408–25.MathSciNetCrossRefMATH
33.
go back to reference Tracy FT. Clean two- and three-dimensional analytical solutions of Richards’ equation for testing numerical solvers. Water Resour Res. 2006;42(8):W08503.CrossRef Tracy FT. Clean two- and three-dimensional analytical solutions of Richards’ equation for testing numerical solvers. Water Resour Res. 2006;42(8):W08503.CrossRef
34.
go back to reference Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of IEEE International Conference Neural Networks, IEEE Service Center. 1995;1995:1942–8. Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of IEEE International Conference Neural Networks, IEEE Service Center. 1995;1995:1942–8.
35.
go back to reference Chau KW. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J Hydrol. 2006;329(3–4):363–7.CrossRef Chau KW. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J Hydrol. 2006;329(3–4):363–7.CrossRef
36.
go back to reference Arora S, Singh S. Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput. 2019;23:715–34.CrossRef Arora S, Singh S. Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput. 2019;23:715–34.CrossRef
37.
go back to reference Wen L, Cao Y. A hybrid intelligent predicting model for exploring household CO2 emissions mitigation strategies derived from butterfly optimization algorithm. Sci Total Environ. 2020;727:138572.CrossRef Wen L, Cao Y. A hybrid intelligent predicting model for exploring household CO2 emissions mitigation strategies derived from butterfly optimization algorithm. Sci Total Environ. 2020;727:138572.CrossRef
Metadata
Title
Extreme Learning Machine with Kernels for Solving Elliptic Partial Differential Equations
Authors
Shaohong Li
Guoguo Liu
Shiguo Xiao
Publication date
10-06-2022
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10026-2

Other articles of this Issue 2/2023

Cognitive Computation 2/2023 Go to the issue

Premium Partner