Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

06-08-2018 | Original Article | Issue 7/2019

International Journal of Machine Learning and Cybernetics 7/2019

F-WSS\(^{++}\): incremental wrapper subset selection algorithm for fuzzy extreme learning machine

Journal:
International Journal of Machine Learning and Cybernetics > Issue 7/2019
Authors:
A. Kale, S. Sonavane
Important notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Fuzzy extreme learning machine (F-ELM) is a hybrid combination made to get the benefits of fuzzy system and extreme learning machine (ELM). F-ELM randomly initializes the weights between input layer to the hidden layer and analytically tunes the weights between hidden layer to the output layer. Due to this random initialization and the availability of redundant and irrelevant features, F-ELM may degrade the overall (generalization) performance. To solve the mentioned problem in this paper, an advanced classification algorithm \(\hbox {F-WSS}^{++}\) (incremental wrapper subset selection algorithm for F-ELM) is designed for multiclass and binary class classification problems. The merits of the proposed algorithm are analyzed theoretically and experimentally. The test results are cross checked for \(\hbox {F-WSS}^{++}\) and \(\hbox {E-WSS}^{++}\) (incremental wrapper subset selection algorithm for ELM) for the clinical dataset. The effectiveness of the \(\hbox {F-WSS}^{++}\) algorithm is verified by statistical methods. It is observed that \(\hbox {F-WSS}^{++}\) has the capability to handle weighted classification problem, feature subset selection problem and optimization problem. It also improves 9–10% classification accuracy by using only 50% features.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 7/2019

International Journal of Machine Learning and Cybernetics 7/2019 Go to the issue