Skip to main content
Top
Published in: Microsystem Technologies 1/2018

14-02-2017 | Technical Paper

Fabrication and hemocompatibility of carboxy-chitosan stabilized magnetite nanoparticles

Authors: Md. Abdur Rahman, Bungo Ochiai

Published in: Microsystem Technologies | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper describes fabrication of a new hemocompatible, magnetic nanoparticles based on magnetite and naturally occurring chitosan, potentially applicable as biomaterials to nanobiomedicine. We fabricated carboxy-functionalized magnetite–chitosan (Fe3O4–CS–BTCDA) nanocomposite particles by a simple two-stage protocol. Magnetite–chitosan (Fe3O4–CS) nanocomposite particles were first prepared via in situ chemical coprecipitation reactions using Fe2+ and Fe3+ salts in an alkaline aqueous solution of CS. Fe3O4–CS nanocomposite particles were then reacted with butanetetracarboxylic dianhydride (BTCDA) to obtain the Fe3O4–CS–BTCDA nanocomposite particles dispersible under physiological conditions. The obtained nanoparticles are superparamagnetic. The hemolytic activity of the Fe3O4–CS–BTCDA nanocomposite particles is very low and essential for practical bio-related applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abreu F, Campana-Filho SP (2005) Preparation and characterization of carboxymethylchitosan. Polímeros: Ciência e Tecnologia 15:79–83 Abreu F, Campana-Filho SP (2005) Preparation and characterization of carboxymethylchitosan. Polímeros: Ciência e Tecnologia 15:79–83
go back to reference Ahmad H, Rahman MA, Miah MAJ, Tauer K (2008) Magnetic and temperature-sensitive composite polymer particles and adsorption behavior of emulsifiers and trypsin. Macromol Res 16:637–643CrossRef Ahmad H, Rahman MA, Miah MAJ, Tauer K (2008) Magnetic and temperature-sensitive composite polymer particles and adsorption behavior of emulsifiers and trypsin. Macromol Res 16:637–643CrossRef
go back to reference Alupei L, Peptu AC, Lungan AM, Desbrieres J, Chiscan O, Radji S, Popa M (2016) New hybrid magnetic nanoparticles based on chitosan-maltose derivative for antitumor drug delivery. Int J Biol Macromol 92:561–572CrossRef Alupei L, Peptu AC, Lungan AM, Desbrieres J, Chiscan O, Radji S, Popa M (2016) New hybrid magnetic nanoparticles based on chitosan-maltose derivative for antitumor drug delivery. Int J Biol Macromol 92:561–572CrossRef
go back to reference Amit PK, Ferguson MR, Kannan MK (2011) Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: implications in biological systems. J Appl Phys 109:07B310-1–07B310-3CrossRef Amit PK, Ferguson MR, Kannan MK (2011) Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: implications in biological systems. J Appl Phys 109:07B310-1–07B310-3CrossRef
go back to reference Anirudhan ST, Gopal SS, Sandeep S (2014) Synthesis and characterization of montomorillonite/N-(carboxyacyl) chitosan coated magnetic particle nanocomposites for controlled delivery of paracetamol. Appl Clay Sci 88–89:151–158CrossRef Anirudhan ST, Gopal SS, Sandeep S (2014) Synthesis and characterization of montomorillonite/N-(carboxyacyl) chitosan coated magnetic particle nanocomposites for controlled delivery of paracetamol. Appl Clay Sci 88–89:151–158CrossRef
go back to reference Arias JL, Reddy LH, Couvreur P (2012) Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J Appl Phys 109:084303–084311 Arias JL, Reddy LH, Couvreur P (2012) Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J Appl Phys 109:084303–084311
go back to reference Ayyappan S, Panneerselvam G, Antony MP, Rama Rao NV, Thirumurugan N, Bharathi A, Philip J (2011) Effect of initial particle size on phase transformation temperature of surfactant capped Fe3O4 nanoparticles. J Phys Chem C 112:18376–18383CrossRef Ayyappan S, Panneerselvam G, Antony MP, Rama Rao NV, Thirumurugan N, Bharathi A, Philip J (2011) Effect of initial particle size on phase transformation temperature of surfactant capped Fe3O4 nanoparticles. J Phys Chem C 112:18376–18383CrossRef
go back to reference Bae KH, Park M, Do MJ, Lee N, Ryu JH, Kim GW, Kim C, Park TG, Hyeon T (2012) Chitosan, oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 6:5266–5273CrossRef Bae KH, Park M, Do MJ, Lee N, Ryu JH, Kim GW, Kim C, Park TG, Hyeon T (2012) Chitosan, oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 6:5266–5273CrossRef
go back to reference Bauer LM, Situ SF, Griswold MA, Samia ACS (2016) High-performance iron oxide nanoparticles for magnetic particle imaging-guided hyperthermia (hMPI). Nanoscale 8:12162–12169CrossRef Bauer LM, Situ SF, Griswold MA, Samia ACS (2016) High-performance iron oxide nanoparticles for magnetic particle imaging-guided hyperthermia (hMPI). Nanoscale 8:12162–12169CrossRef
go back to reference Cai K, Li J, Luo Z, Hu Y, Hou Y, Ding X (2011) β-Cyclodextrin conjugated magnetic nanoparticles for diazepam removal from blood. Chem Commun 47:7719–7721CrossRef Cai K, Li J, Luo Z, Hu Y, Hou Y, Ding X (2011) β-Cyclodextrin conjugated magnetic nanoparticles for diazepam removal from blood. Chem Commun 47:7719–7721CrossRef
go back to reference Chang YC, Chen DH (2005) Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4magnetic nanoparticles for removal of Cu(II) ions. J Coll Interf Sci 283:446–451CrossRef Chang YC, Chen DH (2005) Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4magnetic nanoparticles for removal of Cu(II) ions. J Coll Interf Sci 283:446–451CrossRef
go back to reference Chang B, Zhang X, Guo J, Sun Y, Tang H, Ren Q, Yang W (2012) General one-pot strategy to prepare multifunctional nanocomposites with hydrophilic colloidal nanoparticles core/mesoporous silica shell structure. J Colloid Interface Sci 377:64–75CrossRef Chang B, Zhang X, Guo J, Sun Y, Tang H, Ren Q, Yang W (2012) General one-pot strategy to prepare multifunctional nanocomposites with hydrophilic colloidal nanoparticles core/mesoporous silica shell structure. J Colloid Interface Sci 377:64–75CrossRef
go back to reference Chen H, Kaminski MD, Liu X, Mertz CJ, Xie Y, Torno MD, Roengart AJ (2007) A novel human detoxification system based on nanoscale bioengineering and magnetic separation techniques. Med Hypoth 68:1071–1079CrossRef Chen H, Kaminski MD, Liu X, Mertz CJ, Xie Y, Torno MD, Roengart AJ (2007) A novel human detoxification system based on nanoscale bioengineering and magnetic separation techniques. Med Hypoth 68:1071–1079CrossRef
go back to reference Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrence and uses. Wiley-VCH, Weinheim Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrence and uses. Wiley-VCH, Weinheim
go back to reference da Costa GM, De Grave E, de Bakker PMA, Vandenberghe RE (1994) Synthesis and characterization of some iron oxides by sol-gel method. J Solid State Chem 113:405–412CrossRef da Costa GM, De Grave E, de Bakker PMA, Vandenberghe RE (1994) Synthesis and characterization of some iron oxides by sol-gel method. J Solid State Chem 113:405–412CrossRef
go back to reference Dewi MR, Skinner WM, Nann T (2014) Synthesis and phase transfer of monodisperse iron oxide (Fe3O4) nanocubes. Aust J Chem 67:663–669CrossRef Dewi MR, Skinner WM, Nann T (2014) Synthesis and phase transfer of monodisperse iron oxide (Fe3O4) nanocubes. Aust J Chem 67:663–669CrossRef
go back to reference Dolatkhah A, Wilson LD (2016) Magnetite/polymer brush nanocomposites with switchable uptake behavior toward methylene blue. ACS Appl Mater Interf 8:5595–5607CrossRef Dolatkhah A, Wilson LD (2016) Magnetite/polymer brush nanocomposites with switchable uptake behavior toward methylene blue. ACS Appl Mater Interf 8:5595–5607CrossRef
go back to reference Du Y, Pei M, He Y, Yu F, Guo W, Wanng L (2014) Preparation, characterization and application of magnetic Fe3O4–CS for the adsorption of orange I from aqueous solutions. PLoS ONE 9:e116073CrossRef Du Y, Pei M, He Y, Yu F, Guo W, Wanng L (2014) Preparation, characterization and application of magnetic Fe3O4–CS for the adsorption of orange I from aqueous solutions. PLoS ONE 9:e116073CrossRef
go back to reference Faiyas APA, Vinod ME, Joseph J, GanesanR Pandey K R (2010) Dependence of pH and surfactant effect in the synthesis of magnetite (Fe3O4) nanoparticles and its properties. J Magn Magn Mater 322:400–404CrossRef Faiyas APA, Vinod ME, Joseph J, GanesanR Pandey K R (2010) Dependence of pH and surfactant effect in the synthesis of magnetite (Fe3O4) nanoparticles and its properties. J Magn Magn Mater 322:400–404CrossRef
go back to reference Gupta J, Mohapatra J, Bhargava P, Bahadur D (2016) A pH-responsive folate conjugated magnetic nanoparticle for targeted chemo-thermal therapy and MRI diagnosis. Dalton Trans 45:2454–2461CrossRef Gupta J, Mohapatra J, Bhargava P, Bahadur D (2016) A pH-responsive folate conjugated magnetic nanoparticle for targeted chemo-thermal therapy and MRI diagnosis. Dalton Trans 45:2454–2461CrossRef
go back to reference Hasany FS, Ahmed I, Rajan J, Rehman A (2012) Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci Nanotechnol 2:148–158CrossRef Hasany FS, Ahmed I, Rajan J, Rehman A (2012) Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci Nanotechnol 2:148–158CrossRef
go back to reference Hong YR, Feng B, Chen LL, Liu HG, Li ZH, Zheng Y, Wei GD (2008) Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles. Biochem Eng J 42:290–300CrossRef Hong YR, Feng B, Chen LL, Liu HG, Li ZH, Zheng Y, Wei GD (2008) Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles. Biochem Eng J 42:290–300CrossRef
go back to reference Hong S, Chang Y, Rhee I (2010) Chitosan-coated ferrite (Fe3O4) nanoparticles as a T2 contrast agent for magnetic resonance imaging. J Korean Phys Soc 56:868–873CrossRef Hong S, Chang Y, Rhee I (2010) Chitosan-coated ferrite (Fe3O4) nanoparticles as a T2 contrast agent for magnetic resonance imaging. J Korean Phys Soc 56:868–873CrossRef
go back to reference Hritcu D, Popa M, Popa N, Badescu V, Balan V (2009) Preparation and characterization of magnetic chitosan nanospheres. Turk J Chem 33:785–796 Hritcu D, Popa M, Popa N, Badescu V, Balan V (2009) Preparation and characterization of magnetic chitosan nanospheres. Turk J Chem 33:785–796
go back to reference Jin J, Yang F, Zhang F, Hu W, Sun SB, Ma J (2012) 2,2′-(phenylazanediyl) diacetic acid modified Fe3O4@PEI for selective removal of cadmium ions from blood. Nanoscale 4:733–736CrossRef Jin J, Yang F, Zhang F, Hu W, Sun SB, Ma J (2012) 2,2′-(phenylazanediyl) diacetic acid modified Fe3O4@PEI for selective removal of cadmium ions from blood. Nanoscale 4:733–736CrossRef
go back to reference Kadam AA, Lee SD (2015) Glutaraldehyde cross-linked magnetic chitosan nanocomposites: reduction precipitation synthesis, characterization, and application for removal of hazardous textile dyes. Bioresour Technol 193:563–567CrossRef Kadam AA, Lee SD (2015) Glutaraldehyde cross-linked magnetic chitosan nanocomposites: reduction precipitation synthesis, characterization, and application for removal of hazardous textile dyes. Bioresour Technol 193:563–567CrossRef
go back to reference Kalkan NA, Aksoy S, Aksoy EA, Hasirci N (2012) Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J Appl Polym Sci 123:707–716CrossRef Kalkan NA, Aksoy S, Aksoy EA, Hasirci N (2012) Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J Appl Polym Sci 123:707–716CrossRef
go back to reference Kariminia S, Shamsipuri A, Shamsipuri M (2016) Analytical characteristics and application of novel chitosan coated magnetic nanoparticles as an efficient drug delivery system for ciprofloxacin. Enhanced drug release kinetics by low-frequency ultrasounds. J Pharm Biomed Anal 129:450–457CrossRef Kariminia S, Shamsipuri A, Shamsipuri M (2016) Analytical characteristics and application of novel chitosan coated magnetic nanoparticles as an efficient drug delivery system for ciprofloxacin. Enhanced drug release kinetics by low-frequency ultrasounds. J Pharm Biomed Anal 129:450–457CrossRef
go back to reference Kim DH, Kim KN, Kim KM, Lee YK (2009) Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia. J Biomed Mater Res A 88:1–11CrossRef Kim DH, Kim KN, Kim KM, Lee YK (2009) Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia. J Biomed Mater Res A 88:1–11CrossRef
go back to reference Kono H, Oeda I, Nakamura T (2013) The preparation swelling characteristics, and albumin adsorption and release behaviors of a novel chitosan-based polyampholite hydrogel. React Funct Polym 73:97–107CrossRef Kono H, Oeda I, Nakamura T (2013) The preparation swelling characteristics, and albumin adsorption and release behaviors of a novel chitosan-based polyampholite hydrogel. React Funct Polym 73:97–107CrossRef
go back to reference Köseoglu Y, Kavas H (2008) Size and surface effects on magnetic properties of Fe3O4 nanoparticles. J Nanosci Nanotechnol 8:584–590CrossRef Köseoglu Y, Kavas H (2008) Size and surface effects on magnetic properties of Fe3O4 nanoparticles. J Nanosci Nanotechnol 8:584–590CrossRef
go back to reference Kumar SR, Priyatharshni S, Babu VN, Mangalaraj D, Viswanathan C, Kannan S, Ponpandian N (2014) Quercetin conjugated superparamagnetic magnetite nanoparticles for in vitro analysis of breast cancer cell lines for chemotherapy applications. J Colloid Interface Sci 436:234–242CrossRef Kumar SR, Priyatharshni S, Babu VN, Mangalaraj D, Viswanathan C, Kannan S, Ponpandian N (2014) Quercetin conjugated superparamagnetic magnetite nanoparticles for in vitro analysis of breast cancer cell lines for chemotherapy applications. J Colloid Interface Sci 436:234–242CrossRef
go back to reference Larumbe S, Gomez-Polo C, Perez-Landazabal J, Pastor JMJ (2012) Effect of SiO2 coating on the magnetic properties of Fe3O4 nanoparticles. Phys Condens Matter 24:1–6CrossRef Larumbe S, Gomez-Polo C, Perez-Landazabal J, Pastor JMJ (2012) Effect of SiO2 coating on the magnetic properties of Fe3O4 nanoparticles. Phys Condens Matter 24:1–6CrossRef
go back to reference Lemine OM, Omri K, Zhang B, Mir EL, Sajieddine M, Alyamani A, Bououdina M (2012) Sol-gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlat Microst 52:793–799CrossRef Lemine OM, Omri K, Zhang B, Mir EL, Sajieddine M, Alyamani A, Bououdina M (2012) Sol-gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlat Microst 52:793–799CrossRef
go back to reference Li J, Hou Y, Chen X, Ding X, Liu Y, Shen X, Cai K (2014) Recyclable heparin and chitosan conjugated magnetic nanocomposites for selective removal of low-density lipoprotein from plasma. J Mater Sci Mater Med 25:1055–1064CrossRef Li J, Hou Y, Chen X, Ding X, Liu Y, Shen X, Cai K (2014) Recyclable heparin and chitosan conjugated magnetic nanocomposites for selective removal of low-density lipoprotein from plasma. J Mater Sci Mater Med 25:1055–1064CrossRef
go back to reference Liu X, Hu Q, Fang Z, Zhang X, Zhang B (2009) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25:3–8CrossRef Liu X, Hu Q, Fang Z, Zhang X, Zhang B (2009) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25:3–8CrossRef
go back to reference Liu X, Chen X, Li Y, Wang X, Peng X, Zhu W (2012) Preparation of superparamagnetic Fe3O4@alginate/chitosan nanospheres for candida rugosa lipase immobilization and utilization of layer-by-layer assembly to enhance the stability of immobilized lipase. ACS Appl Mater Inter 4:5169–5178CrossRef Liu X, Chen X, Li Y, Wang X, Peng X, Zhu W (2012) Preparation of superparamagnetic Fe3O4@alginate/chitosan nanospheres for candida rugosa lipase immobilization and utilization of layer-by-layer assembly to enhance the stability of immobilized lipase. ACS Appl Mater Inter 4:5169–5178CrossRef
go back to reference Liu Y, Yuan M, Qiao L, Guo R (2014) An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosens Bioelectron 52:391–396CrossRef Liu Y, Yuan M, Qiao L, Guo R (2014) An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosens Bioelectron 52:391–396CrossRef
go back to reference Long J, Yu X, Xu E, Wu Z, Xu X, Jin Z, Jiao A (2015) In situ synthesis of new magnetite chitosan/carrageenan nanocomposites by electrostatic interactions for protein delivery applications. Carbohydr Polym 131:98–107CrossRef Long J, Yu X, Xu E, Wu Z, Xu X, Jin Z, Jiao A (2015) In situ synthesis of new magnetite chitosan/carrageenan nanocomposites by electrostatic interactions for protein delivery applications. Carbohydr Polym 131:98–107CrossRef
go back to reference López GR, Pineda GM, Hurtado G, de León DR, Fernández S, Saade H, Bueno D (2013) Chitosan-coated magnetic nanoparticles prepared in one step by reverse microemulsion precipitation. Int J Mol Sci 141:9636–19650 López GR, Pineda GM, Hurtado G, de León DR, Fernández S, Saade H, Bueno D (2013) Chitosan-coated magnetic nanoparticles prepared in one step by reverse microemulsion precipitation. Int J Mol Sci 141:9636–19650
go back to reference Luo B, Song XJ, Zhang F, Xia A, Yang WL, Hu JH, Wang CC (2010) Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. Langmuir 26:1674–1679CrossRef Luo B, Song XJ, Zhang F, Xia A, Yang WL, Hu JH, Wang CC (2010) Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. Langmuir 26:1674–1679CrossRef
go back to reference Madhuri-Mandal M, Kundu S, Ghosh KS, Panigrahi S, Sau KT, Yusuf SM, Pal T (2005) Magnetite nanoparticles with tunable gold or silver shell. J Colloid Interface Sci 286:187–194CrossRef Madhuri-Mandal M, Kundu S, Ghosh KS, Panigrahi S, Sau KT, Yusuf SM, Pal T (2005) Magnetite nanoparticles with tunable gold or silver shell. J Colloid Interface Sci 286:187–194CrossRef
go back to reference Massart M (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248CrossRef Massart M (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248CrossRef
go back to reference Onem H, Cicek S, Nadaroglu H (2016) Immobilization of a thermostable phytase from Pinar melkior (Lactarius piperatus) onto magnetite chitosan nanoparticles. CyTA J Food 14:74–83CrossRef Onem H, Cicek S, Nadaroglu H (2016) Immobilization of a thermostable phytase from Pinar melkior (Lactarius piperatus) onto magnetite chitosan nanoparticles. CyTA J Food 14:74–83CrossRef
go back to reference Paluszkiewicz C, Stodolak E, Hasik M, Blazewicz M (2011) FT-IR study of montmorillonite-chitosan nanocomposite materials. Spectrochim Acta Part A 79:784–788CrossRef Paluszkiewicz C, Stodolak E, Hasik M, Blazewicz M (2011) FT-IR study of montmorillonite-chitosan nanocomposite materials. Spectrochim Acta Part A 79:784–788CrossRef
go back to reference Pan C, Hu B, Li W, Sun Y, Ye H, Zeng X (2009) Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4-chitosan nanoparticles. J Mol Catal B Enzyme 61:208–215CrossRef Pan C, Hu B, Li W, Sun Y, Ye H, Zeng X (2009) Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4-chitosan nanoparticles. J Mol Catal B Enzyme 61:208–215CrossRef
go back to reference Pilapong C, Sitthichai S, Thongtem S, Thongtem T (2014) Smart magnetic nanoparticle-aptamer probe for targeted imaging and treatment of hepatocellular carcinoma. Int J Pharm 473:469–474CrossRef Pilapong C, Sitthichai S, Thongtem S, Thongtem T (2014) Smart magnetic nanoparticle-aptamer probe for targeted imaging and treatment of hepatocellular carcinoma. Int J Pharm 473:469–474CrossRef
go back to reference Pylypchuk IV, Kołodyńska D, Kozioł M, Gorbyk PP (2016) Gd-DTPA adsorption on chitosan/magnetite nanocomposites. Nanoscale Res Lett 11:68–178CrossRef Pylypchuk IV, Kołodyńska D, Kozioł M, Gorbyk PP (2016) Gd-DTPA adsorption on chitosan/magnetite nanocomposites. Nanoscale Res Lett 11:68–178CrossRef
go back to reference Sadighian S, Hosseini-Monfared S, Rostamizadeh K, Hamidi M (2015) pH-Triggered magnetic-chitosan nanogels (MCNs) for doxorubicin delivery: physically vs. chemically cross linking approach. Adv Pharm Bull 5:115–120 Sadighian S, Hosseini-Monfared S, Rostamizadeh K, Hamidi M (2015) pH-Triggered magnetic-chitosan nanogels (MCNs) for doxorubicin delivery: physically vs. chemically cross linking approach. Adv Pharm Bull 5:115–120
go back to reference Safari J, Javadian L (2014) Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives. RSC Adv 4:48973–48979CrossRef Safari J, Javadian L (2014) Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives. RSC Adv 4:48973–48979CrossRef
go back to reference Sakti WCS, Narita Y, Sasaki T, Nuryono Tanaka S (2015) A novel pyridinium functionalized magnetic chitosan with pH-independent and rapid adsorption kinetics for magnetic separation of Cr(VI). J Environ Chem Eng 3:1953–1961CrossRef Sakti WCS, Narita Y, Sasaki T, Nuryono Tanaka S (2015) A novel pyridinium functionalized magnetic chitosan with pH-independent and rapid adsorption kinetics for magnetic separation of Cr(VI). J Environ Chem Eng 3:1953–1961CrossRef
go back to reference Salazar-Alvarez G (2004) Synthesis, characterization and application of iron oxide nanoparticles. Doctoral Thesis, Stockholm, Sweden Salazar-Alvarez G (2004) Synthesis, characterization and application of iron oxide nanoparticles. Doctoral Thesis, Stockholm, Sweden
go back to reference Samadikhah HR, Majidi A, Nikkhah M, Hosseinkhani S (2011) Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes. Int J Nanomed 6:2275–2283 Samadikhah HR, Majidi A, Nikkhah M, Hosseinkhani S (2011) Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes. Int J Nanomed 6:2275–2283
go back to reference Shen S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205CrossRef Shen S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205CrossRef
go back to reference Shrifian-Esfahni A, Salehi TM, Nasr-Esfahni M, Ekramian E (2015) Chitosan-modified superparamagnetic iron oxide nanoparticles: design, fabrication, characterization and antibacterial activity. CHEMIK 69:19–32 Shrifian-Esfahni A, Salehi TM, Nasr-Esfahni M, Ekramian E (2015) Chitosan-modified superparamagnetic iron oxide nanoparticles: design, fabrication, characterization and antibacterial activity. CHEMIK 69:19–32
go back to reference Singhal JP, Ray AR (2002) Synthesis of blood compatible polyamide block copolymers. Biomaterials 23:1139–1145CrossRef Singhal JP, Ray AR (2002) Synthesis of blood compatible polyamide block copolymers. Biomaterials 23:1139–1145CrossRef
go back to reference Sreeja V, Joy PA (2011) Effect of inter-particle interactions on the magnetic properties of magnetite nanoparticles after coating with dextran. Int J Nanotech 8:907–915CrossRef Sreeja V, Joy PA (2011) Effect of inter-particle interactions on the magnetic properties of magnetite nanoparticles after coating with dextran. Int J Nanotech 8:907–915CrossRef
go back to reference Strobel R, Pratsinis ES (2009) Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv Powder Tech 20:190–194CrossRef Strobel R, Pratsinis ES (2009) Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv Powder Tech 20:190–194CrossRef
go back to reference Sun HM, Cao LY, Lu LH (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550–562CrossRef Sun HM, Cao LY, Lu LH (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550–562CrossRef
go back to reference Tartaj P, Morales MD, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182–R197CrossRef Tartaj P, Morales MD, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182–R197CrossRef
go back to reference Thakur M, De K, Giri S, Si S, Kotal A, Mandal KT (2006) Interparticle interaction and size effect in polymer coated magnetite nanoparticles. J Phys: Condens Matter 98:9093–9104 Thakur M, De K, Giri S, Si S, Kotal A, Mandal KT (2006) Interparticle interaction and size effect in polymer coated magnetite nanoparticles. J Phys: Condens Matter 98:9093–9104
go back to reference Tran VH, Tran DL, Nguyen NT (2010) Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Mater Sci Eng, C 30:304–310CrossRef Tran VH, Tran DL, Nguyen NT (2010) Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Mater Sci Eng, C 30:304–310CrossRef
go back to reference Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U (2012) Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanopart Res 14:964–976CrossRef Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U (2012) Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanopart Res 14:964–976CrossRef
go back to reference Vuddanda PR, Rajamanickam VM, Yaspal M, Sing S (2014) Investigations on agglomeration and hemocompatibility of vitamin E TPGS surface modified berberin chloride nanoparticles. Biomed Res Int 2014:1–11CrossRef Vuddanda PR, Rajamanickam VM, Yaspal M, Sing S (2014) Investigations on agglomeration and hemocompatibility of vitamin E TPGS surface modified berberin chloride nanoparticles. Biomed Res Int 2014:1–11CrossRef
go back to reference Wang Y, Li B, Xu F, Jia D, Feng Y, Zhou Y (2012) In vitro cell uptake of biocompatible magnetite/chitosan nanoparticles with high magnetization: a single-step synthesis approach for in situ-modified magnetite by amino groups of chitosan. J Biomater Sci Polym Ed 23:843–860CrossRef Wang Y, Li B, Xu F, Jia D, Feng Y, Zhou Y (2012) In vitro cell uptake of biocompatible magnetite/chitosan nanoparticles with high magnetization: a single-step synthesis approach for in situ-modified magnetite by amino groups of chitosan. J Biomater Sci Polym Ed 23:843–860CrossRef
go back to reference Weinhold XM, Sauvageau MCJ, Keddig N, Matzke M, Tartsch B, Grunwald I, Kubel C, Jastorffg B, Thoming J (2009) Strategy to improve the characterization of chitosan for sustainable biomedical applications: SAR guided multi-dimensional analysis. Green Chem 11:498–509CrossRef Weinhold XM, Sauvageau MCJ, Keddig N, Matzke M, Tartsch B, Grunwald I, Kubel C, Jastorffg B, Thoming J (2009) Strategy to improve the characterization of chitosan for sustainable biomedical applications: SAR guided multi-dimensional analysis. Green Chem 11:498–509CrossRef
go back to reference Zamora-Mora V, Fernández-Gutiérrez M, Román SJ, Goya G, Hernández R, Mijangos C (2014) Magnetic core-shell chitosan nanoparticles: rheological characterization and hyperthermia application. Carbohydr Polym 102:691–698CrossRef Zamora-Mora V, Fernández-Gutiérrez M, Román SJ, Goya G, Hernández R, Mijangos C (2014) Magnetic core-shell chitosan nanoparticles: rheological characterization and hyperthermia application. Carbohydr Polym 102:691–698CrossRef
Metadata
Title
Fabrication and hemocompatibility of carboxy-chitosan stabilized magnetite nanoparticles
Authors
Md. Abdur Rahman
Bungo Ochiai
Publication date
14-02-2017
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 1/2018
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3318-8

Other articles of this Issue 1/2018

Microsystem Technologies 1/2018 Go to the issue